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Preface

The second edition of Geometric Morphometrics for Biologists, like the first edition, is a text-
book on shape analysis for biologists, covering both its basic theory and its practice. We
revised the first edition for the same selfish reasons that we wrote it: we teach morpho-
metrics to advanced undergraduate and graduate students and need a textbook. Our stu-
dents continue to ask sophisticated biological questions and require methods that can
answer those questions, but they have little (if any) experience with matrix algebra, non-
Euclidean geometry or multivariate statistics. And they continue to want to apply the new
methods that they learn immediately on learning them. Our students want practical tools
that they can apply to their data, not just theoretical rationales or justifications for methods.
Accordingly, we emphasize the biological questions answered by various methods and pro-
vide examples of applications to both simple and complex biological questions. The second
edition also emphasizes applications to biological questions and illustration of results, and
presumes that the reader’s background consists of only a basic course in statistics and some
familiarity with elementary geometry and algebra. We provide instructions on how to use
available software to conduct analyses explained in the book and we still strongly encourage
students (and faculty) to begin collecting their own data as soon as possible. Even though
we provide data that you can use for learning to run programs, that cannot compare to ana-
lyzing your own data. Your own data will be more familiar and far more interesting than
any that we can provide.

The second edition does differ substantially from the first edition in several important
respects. The most obvious difference between the two editions is that we include a few
pages at the end of each chapter that explain how to run the software and we provide an
online workbook that covers the practical details of a morphometric analysis. We decided
on an online workbook so that we could more regularly update it. Rather than freezing soft-
ware so that it will match the manuals contained in the book, we are unfreezing the manuals
so that they can match the updated software. We also revised the order of some of the chap-
ters, include a chapter on complex statistical designs (Chapter 9, General Linear Models),
and cover a wider range of biological applications, reflecting the increasing use of geometric
morphometrics in diverse biological disciplines. Among the applications added to the sec-
ond edition are methods for incorporating phylogenies into morphometric analyses
(Chapter 10, Evolutionary and Ecological Morphology), methods for analyzing develop-
mental stability, morphological integration and modularity (Chapter 12, Variational Proper-
ties), and the most socially significant additional chapter is the application of geometric
morphometrics to forensics (Chapter 14, Forensic Applications of Geometric Morpho-
metrics). Of course, one of the major changes is the complete rewriting of the manuals for
conducting morphometric analyses.
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Other changes in the book are more structural. The first five chapters are restructured
because of a change in the student population � to many students now entering the bio-
logical disciplines, geometric morphometrics is traditional morphometrics. They do not
need to be eased into the subject by appealing to intuitions grounded in older methods.
We have therefore streamlined the first three chapters and incorporated superimposition
methods into the third chapter rather than beginning with the one that seemed simplest to
grasp, then deriving another from the theory of shape, then reprising the discussion of
superimposition methods given that theory. There are many other more subtle changes,
including the addition of some newer methods (e.g., between-group principal components
analysis [Chapter 6], methods for analyzing fluctuating asymmetry [Chapter 12] and meth-
ods for preserving information about size within shape analysis [Chapter 14]).

We are very grateful to our students, both those in our regular courses at the University
of Michigan, and the State University of New York, Buffalo and Canisius College and to
participants at (and organizers of) our regular workshop at the University of California,
Berkeley. We are indebted to readers of the first edition who pointed out errors and ambi-
guities, especially, Jim Rohlf, Ian Dworkin, and Mark Webster, and to those who provided
(or rewrote) code for conducting morphometrics in R, including Dean Adams, Ian
Dworkin, Annat Haber, Adam Rountrey, Aaron Wood and Nathan Young.

M.L.Z., D.L.S., H.D.S.
May 2012

x PREFACE



Contributors

Miriam Leah Zelditch is an Associate Research Scientist at the Museum of Paleontology,
University of Michigan, MI. She studies the developmental and evolution origins of
morphological variation and its impact on evolution over short and long time scales.

Donald L. Swiderski is a Research Laboratory Specialist in the Kresge Hearing
Research Institute and an Adjunct Research Investigator in the Mammal Division of the
Museum of Zoology, University of Michigan, MI. He is an evolutionary morphologist
interested in relationships between the morphological, functional and ecological diversity
of mammals.

H. David Sheets is a Professor of Physics at Canisius College, Buffalo NY, Adjunct
Professor of Geology, SUNY at Buffalo, Buffalo NY and a member of the Graduate
Program in Ecology, Evolution and Behavior, SUNY at Buffalo. A physicist by training, his
interest in dynamical processes in a wide range of contexts led to work on the processes
and patterns of evolutionary changes, and thus to the analysis of shape.

vii



C H A P T E R

1

Introduction

Shape analysis plays an important role in many kinds of biological studies. A variety of
biological processes produce differences in shape between individuals or their parts, such
as disease or injury, mutation, ontogenetic development, adaptation to local geographic
factors, or long-term evolutionary diversification. Differences in shape may signal differ-
ences in processes of growth and morphogenesis, different functional roles played by the
same parts, different responses to the same selective pressures, or differences in the selec-
tive pressures themselves. Shape analysis is an approach to understanding those diverse
causes of morphological variation and transformation.

Sometimes, differences in shape are adequately summarized by comparing the
observed shapes to more familiar objects such as circles, kidneys or letters of the alphabet
(or even, in the case of the Lower Peninsula of Michigan, a mitten). Organisms, or their
parts, are then characterized as being more or less circular, reniform, C-shaped or mitten-
like. Such comparisons can be extremely valuable because they help us to visualize unfa-
miliar organisms or to focus attention on biologically meaningful components of shape.
However, they can also be vague, inaccurate or even misleading, especially when the
shapes are complex and do not closely resemble familiar icons. Even under the best
of circumstances, we still cannot say precisely how much more circular, reniform, or
C-shaped or mitten-like one shape is than another. When we need that precision, we turn
to measurement.

Morphometrics is a quantitative way of addressing the shape comparisons that have
always interested biologists. This may not seem to be the case because the morphological
approaches once typical of the quantitative literature appeared very different from the
qualitative descriptions of morphology; whereas the qualitative studies produce pictures
or detailed descriptions (in which analogies figure prominently), morphometric studies
usually produced tables with disembodied lists of numbers. Those numbers seemed so
highly abstract that we could not readily visualize them as descriptors of shape differences,
and the language of morphometrics also seemed highly abstract and mathematical. As a
result, morphometrics seemed closer to statistics or algebra than to morphology. In one
sense that perception is entirely accurate: morphometrics is a branch of mathematical shape
analysis. The way that we extract information from morphometric data involves mathemati-
cal operations rather than concepts rooted in biological intuition or classical morphology.
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Indeed, the pioneering work in modern geometric morphometrics (the focus of this book)
had nothing at all to do with organismal morphology; the goal was to answer a question
about the alignment of megalithic “standing stones” like Stonehenge (Kendall and
Kendall, 1980). Nevertheless, morphometrics can be as much a branch of morphology as it
is a branch of statistics. It is that when the tools of shape analysis are turned to organismal
shapes, illustrating and even explaining shape differences that have been mathematically
analyzed.

The tools of geometric shape analysis have a tremendous advantage when it comes
to these purposes: not only because it offers precise and accurate description, but also
because it enables rigorous statistical analyses and serves the important purposes of
visualization, interpretation and communication of results. Geometric morphometrics
allows us to visualize differences among complex shapes with nearly the same facility
as we can visualize differences among circles, kidneys and letters of the alphabet (and
mittens).

In emphasizing the biological component of morphometrics, we do not discount the
importance of its mathematical component. Mathematics provides the models used to
analyze data, both the general linear models exploited in statistical analyses and the alge-
braic models underlying exploratory methods such as principal components analysis.
Additionally, mathematics provides a theory of measurement that we use to obtain the
data in the first place. It may not be obvious that any theory governs measurement
because very little theory (if any) underlays traditional measurement approaches. Asked
the question “What are you measuring?”, we could give many answers based on our
biological motivation for measurement � such as (1) “functionally important characters”;
(2) “systematically important characters”; (3) “developmentally important characters”;
or (4) “size and shape”. However, when asked “what do you mean by “character” and
how is that related either mathematically or conceptually to what you are measuring?” or
if asked “what do you mean by “size and shape”?”, it was difficult to provide coherent
answers. A great deal of experience and tacit knowledge went into devising measurement
schemes, but that knowledge and experience had very little to do with any general theory
of measurement. Rather than being grounded in a general theory of measurement,
each study appeared to devise its approach to measurement according to the biological
questions at hand, as guided by the particular tradition within which that question arose.
There was no general theory of shape nor were there any analytic methods adapted to the
characteristics of shape data.

Owing largely to developments in measurement theory over the past two decades, there
has been remarkable progress in morphometrics. That progress resulted from first pre-
cisely defining “shape” and then pursuing the mathematical implications of that defini-
tion. We therefore now have a theory of measurement. Below we offer a critical overview
of the recent history of measurement theory, presenting it first in terms of exemplary data
sets and then in more general terms, emphasizing the core of the theory underlying
geometric morphometrics � the definition of shape. We conclude the conceptual part
of this Introduction with a brief discussion of methods of data analysis. The rest of the
Introduction is concerned with the organization of this book and where you can find more
information about available software and other resources for carrying out morphometric
analyses.
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A CRITICAL OVERVIEW OF MEASUREMENT THEORY

Traditionally, morphometric data were measurements of length, depth and width, such
as those shown in Figure 1.1, based on a scheme presented in a classic ichthyology text
(Lagler et al., 1962). Such a data set contains relatively little information about shape and
some of it is fairly ambiguous. These kinds of data sets contain less information than they
appear to hold because many of the measurements overlap or run in similar directions.
What may be most obvious is that several measurements radiate from a single point so
that their values cannot be completely independent; any error in locating that point affects
all of these measurements. Such a data set contains less information than could have been
collected with no greater effort because some directions are measured redundantly and
many measurements overlap. For example, there are many measurements of length along
the anteroposterior body axis and most of them cross some part of the head, whereas there
are only two measurements along the dorsoventral axis and both are of post-cranial
dimensions. In addition, because most of the measurements are long, it is difficult to local-
ize shape differences to any region, such as any change in the proportions of the pre- and
postorbital head or the position of the dorsal fin relative to the back of the head. Also,
some of the information that is missing from this type of measurement scheme, but which
is necessary for morphological analysis, concerns the spatial relationships among measure-
ments. That information might be in the descriptions of the measurements, i.e. the line
segments, but it is not captured by the data. The data consist solely of a list of observed
values of those lengths. Finally, the measurements may not sample homologous features
of the organism, making it difficult to interpret the results. For example, body depth can
be measured by a line extending between two well-defined points (e.g. the anterior base of
the dorsal fin to the anterior base of the anal fin), but it can also be measured wherever
the body is deepest, yielding a measurement of “greatest body depth” wherever that
occurs. That second measurement of depth might not be comparable anatomically from
species to species, or even from specimen to specimen, so it provides almost no useful
information (except for maximal depth). Considering these many limitations of traditional
measurements, it is clear that the number of measurements greatly overestimates the
amount of shape information that is actually collected.

FIGURE 1.1 Traditional morphometric measure-
ments of external body form of a teleost, adapted
from the scheme in Lagler et al., 1962.
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The classical measurement scheme can be greatly improved without altering its basic
mathematical framework, by the box truss (Figure 1.2) � a scheme developed by Strauss,
Bookstein and colleagues (Strauss and Bookstein, 1982; Bookstein et al., 1985). This set
of measurements samples more directions of the organism, the measurements are more
evenly spaced, and there are also many short measurements. Moreover, all the endpoints
of the measurements are biologically homologous anatomical loci � landmarks. But even
though the truss is a clear improvement over classical measurement schemes when it comes
to describing shape differences, the result is still just a list of numbers (i.e. the lengths of the
truss elements), with all the attendant problems of visualization and communication.

One general problem shared by both those measurement schemes is that they fail to
collect all the information available from the endpoints of the measurements. The truss
scheme shown in Figure 1.2 contains 30 measurements, but 30 is only a fraction of the
120 that could be made among the same 16 landmarks (Figure 1.3). Of course, many of
the 120 are redundant, and several of them span large regions of the organism, making it
difficult to localize where changes occur. Additionally, we would need extraordinarily
large samples in order to test hypotheses about shape and the results would be incredi-
bly difficult to interpret because there would be 120 pieces of information (e.g. regression
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FIGURE 1.2 Truss measurement
scheme of external body form of a teleost:
(A) well-defined endpoints of measure-
ments; (B) a selection of 30 lengths,
arranged in a truss.
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coefficients, principal component loadings) for each trend or difference. Analyzing
all 120 requires specialized methods beyond the scope of this book (see Lele and
Richtsmeier, 1991, 2001; Richtsmeier and Lele, 1993). We might be tempted to cull the
120 measurements, retaining only those that seem most likely to be informative but, until
we have done the analysis, we cannot know which can be safely culled. Clearly, we need
another way to get the same shape information as the 120 measurements, but without
the excessive redundancy.

Another problem common to the truss and more traditional schemes is that all the
measurements are of size � each measurement is the magnitude of some dimension, such
as length, width, area, all of which are measures of size. That does not mean that the data
include no information about shape � they do. But that information is contained in the
ratios among the lengths, and it can be surprisingly difficult to extract it because that
requires separating information about shape from that about size. Some studies have ana-
lyzed ratios directly but ratios pose serious statistical problems (debated by Atchley et al.,
1976; Corruccini, 1977; Albrecht, 1978; Atchley and Anderson, 1978; Dodson, 1978; Hills,
1978). The more usual approach is to construct shape variables from linear combinations
of length measurements, such as Principal Component (PC) loadings. Here, one compo-
nent, usually the first (PC1), is interpreted as a measure of size and all the others are inter-
preted as measures of shape. However, PC1 includes information about both shape and
size, as do all the other PCs. The raw measurements include information about both shape
and size and so do their linear combinations.

Not only are the methods of separating size from shape problematic; the whole idea
of “size and shape” has been one of the most controversial subjects in traditional morpho-
metrics. One reason for this controversy is the multiplicity of definitions of size (and there-
fore also of shape), several of which are articulated by Bookstein (1989). Virtually any
approach to effecting this separation can be disputed on the grounds that the notion of

FIGURE 1.3 All 120 measurements between endpoints defined by the 16 landmarks of Figure 1.2.
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“size” being separated from “shape” is not really “size”. Also, some workers argue that no
such separation is biologically reasonable; see, for example, the discussion of studies of
heterochrony based on growth models by Klingenberg (1998). However, even if we accept
that size and shape are intimately linked by biological processes, we still want to know
more about their relationship than the mere fact of its existence.

Extracting information about the relationship between size and shape from a set of
measurements can be especially difficult when the organisms span a broad size range. For
example, when some organisms in a population are 20 mm long and others are 250 mm,
all measurements will differ in length. Even if shape is not much influenced by a tenfold
change in size, all measurements will still be correlated with size. Quantifying that fact
is merely restating the obvious. Consequently, we should expect size to be the dominant
source of variance in traditional morphometric data because these measurements are mea-
surements of size. We have redundantly measured the same factor and it will therefore be
the dominant factor in the data. But we should be concerned about the possibility that the
variance in shape is not so much explained by the variance in size, as it is simply over-
whelmed by it. For instance, in analyses of ontogenetic series of two species of piranha
(one being the running example throughout this chapter), we find that 99.4% of the vari-
ance within each species is explained by PC1. That suggests that there is nothing else to
explain because it is hard to imagine that the remaining 0.6% is anything but noise. And
yet, we do not actually know what proportion of shape variation is actually explained by
size. What that quantity, 99.4%, tells us is the proportion of variation in measurements of
size that is explained by size.

Finally, one serious limitation of traditional morphometrics is that the measurements
convey no information about their geometric structure. If we strip off the line segments
connecting the landmarks in Figure 1.3 and just look at the position of the landmarks
on the page (Figure 1.4), we can see that some are close to each other (e.g. 12 and 13) and
others are far apart (e.g. 1 and 7); some are ventral (9 and 10) and some are dorsal (3 and 5),
others are anterior (e.g. 1 and 2) and still others are posterior (6�8). That information
about position, which is so important to morphologists, is contained in the coordinates of
the landmarks but not in the list of distances among them � not even in the more com-
prehensive list of 120 measurements. But the x- y-coordinates of the 16 landmarks contain
all that positional information in addition to all the information contained in the 120 dis-
tances between all pairs of landmarks. Those distances can be reconstructed from the
coordinates if the units of the coordinate system are known. More importantly, simple
algebraic manipulations allow us to partition the information into size and shape and to
strip off irrelevant information like the position of the organism in the photograph and its
orientation in the photographic plane. After we have removed that irrelevant information,
and separated shape from size, we have fewer than 32 shape variables but we have all
the information about the geometric structure of our landmarks that was captured when
we digitized the specimens. We also have all the information present in the full list of
120 measurements without its redundancy. Consequently, we do not need to cull the data
in advance of the analysis, and we do not thereby lose any information we might have in
the data. In addition, partitioning morphological variation into size and shape means that
variance in size does not overwhelm variance in shape even when variance in size is
relatively large. In the two species mentioned above (in which PC1 accounts for 99.4% of
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the variance), size explains 72.3% of the variance in shape in one species but only 21.7%
in the other.

An important advantage of analyzing landmark coordinates is that it is relatively easy
to draw informative pictures to illustrate the results. In Figure 1.5, the shape changes
that occur during the ontogeny of one species of piranha are shown as vectors of relative
landmark displacement and as a deformed grid that shows the changes between those
vectors. In both representations, it is quite clear that the middle of the body becomes rela-
tively deeper while the postanal region becomes relatively short, especially the caudal
peduncle (between landmarks 6 and 7). Both pictures also show that the posterodorsal
region of the head (above and behind the eye) becomes relatively longer and deeper while
other regions of the head become relatively shorter. (We emphasize that these are relative
changes, because the piranha becomes absolutely larger in every dimension and region
mentioned.)

It is possible to present traditional morphometric results in graphic form by placing
the values of the allometric coefficients on the organisms, as in Figure 1.6. This, like
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FIGURE 1.4 The 16 landmarks, stripped
of the line segments connecting them.
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Figure 1.5, shows that the middle of the body grows faster and becomes deeper than the
rest of the animal. The limitation of this representation (and of the analysis) is exemplified
by the difficulty of interpreting the large coefficient (1.23) of the posterior segment of
dorsal head length � it is not clear whether the head is just elongating rapidly in this area
or if it is mainly deepening or if it is both elongating and deepening. We also cannot tell
if the pre- and postorbital head increase at the same rate because the measurement scheme
does not include distances from the eye to other landmarks. None of these ambiguities
arose from the geometric analysis of the landmark coordinates; the figure illustrating that
result showed the ontogenetic changes in all those specific regions. This ability to extract
and communicate information about the spatial localization of morphological variation,
including its magnitude, position and spatial extent, is among the more important benefits
of geometric morphometrics. Following the statistical analysis, which allows us to determine
which factors have an effect on shape, we can diagram the effects of the factors.
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FIGURE 1.5 Ontogenetic shape change depicted in two visual styles. (A) Landmarks of all specimens; (B) vectors
of relative landmark displacement; (C) deformed grid.
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Using landmarks as data does not solve all of the problems confronting traditional
methods, and one remaining problem becomes evident as soon as we try to examine the
changes in head profile over the piranha’s ontogeny (Figure 1.7). We can see that the aver-
age slope on either side of landmark 2 must get steeper, but we cannot tell whether the
profile becomes more S-shaped, C-shaped or any other shape. This uncertainty arises
because the three landmarks provide too little information about the curve between them;
they are no better a sample of the curve’s shape than the line segments connecting them.
For this reason, we need to incorporate information about points on the curve between
landmarks (Figure 1.8). These points (called semilandmarks) are not landmarks because
they are not individually homologous anatomical loci even though they sample points
along homologous curves. The utility of semilandmarks is even more apparent if we look
at structures whose curvature is both complex and critical to its function, like those on
the margins of rodent mandibles (Figure 1.9). The regions on which the muscles insert
lack landmarks but the information about the depth of the jaw, the positioning and
orientations of the muscles provided by semilandmarks is necessary for any explanation
of jaw shape. As we predicted in the Introduction to the first edition of this book, the
limitation of geometric morphometrics to landmarks was transitory.

Geometric morphometrics may also have appeared to have a limitation not confronting
traditional methods: the restriction to two-dimensional data. But that limitation was purely
a matter of the technology for obtaining the coordinate data. The mathematical theory
poses no obstacle to the analysis of three-dimensional shapes. The obstacles lie in cost of
the equipment for obtaining three-dimensional coordinates and the details of using it,
such as the need to transport either the equipment or the specimens so that they are in the
same place at the same time. The other problem results from the difficulty of depicting
results of the analysis on a static, two-dimensional medium such as the pages of a journal.
Traditional morphometric studies did not face these obstacles because specimens could
always be measured with calipers if the equipment needed for three-dimensional
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FIGURE 1.6 Allometric coefficients of traditional morphometric measurements, plotted on the organism.
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digitizing is exorbitant (in either time or money) and the results were not depicted at all
so the problems posed by projecting three-dimensional data onto a two-dimensional
page did not arise. However, when using calipers we do not collect three-dimensional
coordinates so the technology sidesteps rather than solves the problem. And tabulating
numbers rather than depicting results also sidesteps rather than solves the problem.
Although the equipment is costly and not always portable, and the results can be diffi-
cult to show, three-dimensional morphometrics is just as feasible mathematically as
two-dimensional morphometrics.
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head profile that capture information about
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FIGURE 1.7 Ontogenetic change in head
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tion of straight lines drawn between land-
marks of the head.
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SHAPE AND SIZE

The rapid progress in geometric morphometrics resulted from a coherent mathematical
theory of shape which, in turn, resulted from a precise definition of the concept. Like the
definition of any word, that of “shape” is entirely a matter of semantics. However, seman-
tics is not trivial. We cannot have a coherent theory about an ambiguous concept and we
cannot have a coherent mathematical theory of shape until shape is unambiguously
defined. The definition of shape is thus the foundation for the mathematical theory of
shape. Whether that theory applies to our biological questions depends on whether it cap-
tures what we mean by shape. Thus, it is important to understand the definition of shape
underlying geometric morphometrics; also, because the meaning of “size” depends on the
meaning of “shape” (and vice versa), we cannot understand one without understanding
the other.

Shape

In geometric morphometrics, shape is defined as “all the geometric information that
remains when location, scale and rotational effects are filtered out from an object”
(Kendall, 1977). The earliest work that depends on this definition of shape began the
analysis with the coordinates of points; consequently, the “objects” are sets of those
coordinates � i.e. configurations of landmarks, such as that shown in Figure 1.4. An important
implication of Kendall’s definition is that removing the differences between configurations

FIGURE 1.9 Semilandmarks on four squirrel mandibles to capture information about the curvature of the jaw,
which reflects both the curvature of the incisor and the length and orientation of muscle insertions in regions
where there are no landmarks.
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that are attributable to differences in location, scale and orientation leaves only differences
in shape. These operations and their consequences are illustrated in Figure 1.10. In
Figure 1.10A, there are two configurations, side by side. This difference in location has no
bearing on their shape difference so, in Figure 1.10B, both have been translated to the
same location. The two configurations still differ in scale, which also has no bearing on
their shape difference so, in Figure 1.10C, they are converted to the same scale. The two
configurations still differ in orientation (their long axes are about 45� apart). That, too, has
no bearing on their shape differences so, in Figure 1.10D, they are rotated to an alignment
that leaves shape as the only difference between them. After removing all the differences

(A)

(B)

(C)

(D)

FIGURE 1.10 Removing variation due to differ-
ences in position, scale and orientation. (A) Two origi-
nal configurations; (B) after removing differences in
location; (C) after removing differences in scale; (D) after
removing differences in orientation, leaving only differ-
ences in shape.
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that are not in shape, we are left with only the differences in shape. We can now use the
coordinates of the final configurations (Figure 1.10D) to analyze these shape differences.
When we have sampled the curves between landmarks, we also have to remove any
non-shape variation resulting from our (arbitrary) choice of where to sample those points
along a curve.

Size

Kendall’s definition of shape mentions scale as one of the effects to be filtered out.
The implication is that “scale” is the definition of size that is complementary to shape
under some models of error. The two are ideally geometrically independent (i.e. orthogo-
nal). The concept underlying geometric scale is quite simple, and may be intuitively obvi-
ous by visual inspection. As you can see in Figure 1.10A, the landmarks are generally
further apart in one configuration than in the other. That is obviously what we expect
when a configuration is larger, whether because the organism is larger or the photograph
of it is larger. To calculate geometric scale, we compute the distances of all the landmarks to
the center of the form (its “centroid”); Figure 1.11 shows the location of the centroid and the
segments connecting the landmarks to it. Now we can compute geometric scale by calculat-
ing the square of each distance from landmark to the centroid, summing those squares and
taking the square root of their sum. This quantity is called “centroid size”.

Centroid size is the one measure of size that is mathematically independent of shape.
It is, more precisely, orthogonal to shape. That is a matter of definition, not biology. In bio-
logical data, centroid size may often be empirically correlated with shape because larger
organisms often are shaped differently than smaller ones. The fact that we have defined
and measured shape and size separately does not mean that we are assuming them to be
biologically separate. Nor does their separation cause us to lose information about the rela-
tionship between size and shape. We can easily analyze that relationship by conventional
statistical methods.

FIGURE 1.11 A visual repre-
sentation of centroid size as
computed for 16 landmarks on a
piranha. The open circle is the
centroid; the segments connecting
the centroid to the landmarks
represent the distances used to
compute centroid size.
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METHODS OF DATA ANALYSIS

Replacing traditional morphometric variables with landmark coordinates does not
deprive us of the methods we have long used in statistical analyses of morphological data.
We can ask all the questions that we ever asked about morphology. Such questions often
comprise two parts, the first of which Bookstein (1991) termed the “existential question”: is
there an effect on shape? We answer that by determining the probability that the association
between variables is no greater than could have arisen by chance. The second question,
“what is the effect?” calls for description. In the ontogenetic series of piranhas discussed
earlier, we can analyze the relationship between shape and size by computing the centroid
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FIGURE 1.12 Analyzing the impact of size on shape by multivariate regression. (A) Configurations of land-
marks from which differences in position, scale and orientation have been removed; (B) the covariance between
size and shape depicted by vectors of relative landmark displacements; (C) the covariance between size and shape
depicted by a deformed grid; (D) the covariance between size and shape depicted by a deformed grid plus vectors
of relative landmark displacement.
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size of each configuration and the coordinates of the landmarks from which differences in
position, scale and rotational effects have all been removed. These new configurations,
shown in Figure 1.12A, represent the shapes of all the specimens. To answer the first ques-
tion about the existence of an effect, we regress shape on centroid size using a multivariate
regression in which “shape” is the dependent variable and “centroid size” (or its logarithm)
is the independent variable. For this example, we can conclusively reject the null hypothesis
of no effect; we obtain an F-ratio of 94.02 with 28 and 1008 degrees of freedom; P, 13 1025.
We can also determine that 72.3% of the shape variation is explained by size. To answer
the second question, we depict the changes either by relative landmark displacement
(Figure 1.12B), a deformed grid (Figure 1.12C) or both (Figure 1.12D).

Replacing distances with coordinates also does not require us to abandon familiar
ordination methods, such as principal components analysis and canonical variates analy-
sis. These methods are often used to explore patterns in the data in the hope that their
results will suggest the factors responsible for variation among individuals or differences
among groups. At the very least, these analyses can extract the dimensions along which
individuals vary most and groups differ most. The results include scatter-plots of speci-
mens that depict patterns of variation or differences. The interpretation of these scatter-
plots is by the accompanying graphics of the dimensions along which specimens most
vary (Figure 1.13) or groups most differ (Figure 1.14).

The important distinction between analyses of geometric shape data and conventional mor-
phometric data is that analyses of landmark configurations are necessarily multivariate. By
definition, shape is a feature of the whole configuration of landmarks. Even the simplest shape,
a triangle, cannot be analyzed univariately. Shape data are multidimensional in that each indi-
vidual datum, i.e. each configuration, is described by multiple coordinates. Because we have
defined shape in terms of a whole configuration of landmarks, our analyses must be of that

FIGURE 1.13 Principal components analysis of piranha body shape.
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whole. However, this does not prevent us from subdividing an organism to analyze relation-
ships between parts. For example, we could divide the piranha into the cranial and post-cra-
nial regions and analyze landmarks from each region as a separate configuration to ask
whether two regions covary. The requirement that configurations be analyzed multivariately
does not force us to treat organisms as unitary wholes (although we may find out that they are).

BIOLOGICAL AND STATISTICAL HYPOTHESES

Few hypotheses of interest to biologists are as simple as the allometric hypothesis
examined earlier. Only rarely can the more complex hypotheses be wrestled into the form
of a statistical null hypothesis and its alternatives. The first difficulty is that the statistical
null merely states that the factor of interest has no effect; this is the hypothesis we hope to
reject in favor of the alternative hypothesis that the factor does have an effect. In this situa-
tion, we have two hypotheses that are diametrically opposed, meaning that they are mutu-
ally exclusive. In contrast, many biological hypotheses are more complex because they
state multiple alternative theories of causation. These alternative causal theories may not
be mutually exclusive and all predict that the factor has an effect. Thus, the real goal
of many studies is to discriminate between expected effects, not to reject a hypothesis of
no effect. For example, perhaps we are interested in the evolution of claw shape in crabs.

FIGURE 1.14 Canonical variates analysis of piranha body shape.
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We probably already know that claw shape has evolved, so we are not aiming to test the
null hypothesis that they have not. The more interesting (and difficult) question is whether
the derived claw shape arose to enhance the ability to burrow into a muddy substrate
or was intrinsically constrained by development (or both). We may also have multiple
hypotheses in addition to these, including others regarding the function of claws (e.g. that
the derived claw shape enhances the ability to block a burrow entrance or even to attract
mates). We might also have several alternative theories about how development could
constrain the evolution of claw shape.

Yet another obstacle to translating a biological hypothesis into a statistical one is
that the complexity of the biological hypotheses rarely allows for adequate testing by
any single method. To test whether the evolution of crab claw shape was intrinsically
constrained by development, we must first determine whether there is any evidence of
a developmental constraint on variation, and we would also need to show that the vari-
ous adaptive hypotheses predict different evolutionary transformations than those speci-
fied by the developmental constraint hypothesis. Otherwise we cannot rule out any of
the competing biological alternative hypotheses.

In emphasizing the complexity of biological hypotheses we do not mean to say that
they cannot be tested rigorously. The point is that doing so requires far more effort and
creativity than testing the simple hypothesis that size affects shape or that species differ in
shape. It also requires understanding what various analytic methods do, what their limits
are, and how they are mathematically related. Far too often biologists use a limited array
of techniques to analyze multivariate data, regardless of their questions. Throughout this
book we emphasize the biological questions that prompt the morphometric analysis, and
underscore the applications of each method as we discuss them in turn. However, only
after a variety of methods has been introduced (and mastered) can we begin to address
questions of realistic biological complexity.

ORGANIZATION OF THE BOOK

This book is divided into three main sections. The first is a series of chapters covering
the basics of shape data � what landmarks and semilandmarks are, how to select land-
marks as well as how to incorporate semilandmarks into the measurement scheme
(Chapter 2), how the coordinates of both landmarks and semilandmarks are transformed
into shape variables that will be used in subsequent analyses (Chapter 3), the mathematical
theory of shape (Chapter 4) and the thin-plate spline interpolation function (Chapter 5). The
second section covers analytic methods, including exploratory methods (Chapters 6 and 7)
and formal methods of hypothesis testing (Chapters 8 and 9). The final section discusses the
application of these methods to complex biological questions, ones that will require using
multiple methods, both exploratory and hypothesis testing (Chapters 10�14).

The first section begins with what will be your own first step � deciding what to mea-
sure (Chapter 2), and then turning the coordinates that you digitize into data (Chapter 3).
Only after you have some experience with these two steps will the abstractions of the
theory (Chapter 4) make sense (or be interesting). In our discussion of shape variables,
we present three methods for superimposing the data: first the two-point registration that
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yields Bookstein’s shape coordinates, which are the easiest to understand; next Procrustes
superimposition, the most widely used method; and third, resistant fit Procrustes superim-
position. The main reason for presenting all three is so that you can see how the same
three operations that remove non-shape information from the data are applied. We discuss
these first because doing so allows us to discuss a number of general issues (including the
interpretation of results) before presenting the more abstract theory of shape analysis in
Chapter 4. That theory provides the framework for generating (as well as analyzing) shape
variables. After reviewing the basic theory, we introduce the thin-plate spline (Chapter 5),
an interpolation function useful for depicting results by means of a deformed grid (as in
Figures 1.11�1.13). All the chapters in this first section are about the data.

The second section of the book is about the methods for analyzing the data. These
methods produce the biologically interesting variables � the ones that covary with the
biological factors of interest. Unlike the variables produced by the methods of the first
section, the variables produced by these analytic methods have a biological meaning.
They answer such fundamental questions as “What impact does size have on shape?”,
or “By how much, and in what way, do these species differ in their ontogenies?”, or “Do
these populations vary along a single latitudinal gradient?”, or even “What shape has the
highest fitness in this population?” Each of these questions is answered in terms of a shape
variable � the vector of coordinates that covaries with size or age, or that covaries with
latitude or fitness, or that expresses the difference between the means of two groups.
When we do not know what factors might be present in the data, a common problem in
studies that analyze the variation within and between natural populations, we can explore
the data algebraically, using methods of matrix algebra to determine if any interesting pat-
terns emerge. Principal components analysis (PCA) is one example of this kind of explor-
atory technique; the main purpose is to determine what varies and to look for biological
explanations for that variation. Canonical variates analysis (CVA) and between-group
principal components analysis (BGPCA) are also exploratory methods, but they presume
that you are asking questions about differences between groups, so there is a factor of
interest: your grouping variable.

Because many biologists begin a study by exploring patterns in the data, the section on
analytic methods begins with an overview of the exploratory methods (Chapter 6). These
are useful for extracting simple patterns from complex multidimensional data because
they provide a space of relatively low dimensionality that captures most of the variation
among specimens (PCA), or most of the differences among groups (canonical variates
analysis, CVA and between-groups PCA). We explain the algebra underlying these meth-
ods, compare them, and discuss when each is appropriate in light of particular biological
questions. We also discuss a method for analyzing the covariance between two multivari-
ate blocks of data, partial least squares, PLS (Chapter 7).

The two following chapters cover methods of hypothesis testing. We begin with simple
statistical models (Chapter 8), regression of shape onto a single continuous independent
variable (multivariate regression) or a single independent categorical variable (one-way
multivariate analysis of variance, MANOVA). We discuss how the hypotheses are formu-
lated and tested using both analytic tests and resampling-based methods (bootstrapping
and permutations). The next chapter (Chapter 9) introduces the General Linear Model and
discusses more complex hypotheses, those that include multiple factors, both continuous
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and categorical (and both fixed and random, including nested terms). These models are
introduced first in the context of univariate data, then in the context of multivariate data.
Testing complex hypotheses requires understanding how to construct design matrices and
also, in some cases, how to determine the appropriate numerator and denominator sums
of squares for the F-ratio (because some programs require that you input design matrices,
and you may even need to input the design matrix for the numerator and denominator
sums of squares for every term of interest).

The third section covers applications of morphometric methods to realistically complex
biological hypotheses. Among these complex questions are those posed by the relationship
between ecology and morphology, and the evolution of morphology, a broad subject that
encompasses studies of phylogenetic patterns, morphological diversity (disparity) and the
covariance between evolutionary changes in traits such as size and shape (Chapter 10).
The next two chapters focus on applications of morphometrics to evolutionary develop-
mental biology. The first concerns the evolution of ontogeny, focusing on a series of
hypotheses, such as ontogenetic scaling, heterochrony and diversification of ontogenetic
allometries and how these can be tested as well as how their impact on disparity can be
assessed (Chapter 11). The second (Chapter 12) concerns variational properties, i.e. canali-
zation, phenotypic plasticity, developmental stability and morphological integration and
modularity. The next chapter discusses methods useful in systematic studies (Chapter 13).
The final chapter covers methods useful in forensics (Chapter 14). Forensic applications
of geometric morphometrics have included the determination of sex and age of human
remains and forensic odontology, especially bitemark analysis, as well as in other areas
that use impressions as evidence, including tool and footwear marks. Forensic applications
require adapting geometric morphometric methods to include information about size.

The terminology of statistical shape analysis can be daunting because there are many
unfamiliar words and many terms that differ by only a single letter or subscript. Thus we
conclude this book with a glossary of terms, including general statistical terms (e.g. popula-
tion, sample) and more specialized terms of shape analysis (e.g. Procrustes distance, partial
warps).

SOFTWARE AND OTHER RESOURCES

Geometric morphometrics studies require fairly specialized software, not so much
to analyze the data as to depict the results. Fortunately, the software necessary for most
analyses is readily and freely available. Information about finding, downloading and
installing software, as well as about running the programs, is available in the workbook
on the companion site for this book. We recommend that you get the workbook even
before you have your own data, using the datasets that we provide to become familiar
with programs before you need them for your own analyses.

All the details about conducting analyses that we describe in this book are in the work-
book rather than at the end of the chapters in this edition. We keep them separate because
the software develops more rapidly than the mathematical theory of shape and keeping
the workbook separate allows us to update information about software more regularly
than we revise the book.
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C H A P T E R

2

Landmarks and Semilandmarks

Landmarks are discrete anatomical loci that can be recognized as the same point in all
specimens in the study. They are often termed “homologous points” because these points
can be matched up, one by one, as “the same point” in all individuals in the study. For
example, the mental foramen of the squirrel lower jaw (Figure 2.1A) is a discrete point
which corresponds to the mental foramen on any other mammalian jaw. “Homology” may
seem like the crucial term in the definition of a landmark, but the idea that these are dis-
crete points is equally crucial and these are notably sparse on some structures, including
the jaw. We could restrict the analysis to these few points (Figure 2.1B.), but we would
miss a great deal of the morphology if we did. How much we would miss becomes more
obvious by removing the photograph from the picture and looking only at landmarks
(Figure 2.1C). Landmarks are scarce, particularly in the regions of greatest interest, such as
where the muscles insert on the jaw. The complex curves that contain critical information
about the morphology motivates including additional points that can capture information
about curvature (Fig. 2.1D). These additional points are not discrete anatomical loci (much
less homologous); rather than being landmarks these points are “semilandmarks”.

There are some obvious differences between landmarks and semilandmarks. As noted
above, one difference is their discreteness, another is their homology. Related to these
is another: the position of semilandmarks along the curve is arbitrary � we could just as
easily sample the curve according to the scheme shown in Figure 2.2A or 2.2B. The ques-
tion every researcher must face is whether to include semilandmarks at all and, should
they decide “yes”, then the next question is how to sample them. How these questions
will be answered depends on the weight given to each of the several criteria for selecting
landmarks. That is the primary topic of the present chapter. Throughout much of our
discussion of these criteria, we will talk about selecting landmarks one by one, treating
each as an individual point, but landmarks (and semilandmarks) are not analyzed or inter-
preted one by one. The information about shape is contained in the entire constellation
of landmarks and semilandmarks, i.e. the configuration of points. That configuration is a
single datum. This may seem intuitively obvious to many readers, but readers experienced
in traditional morphometrics may find this view of a configuration as a single datum
counterintuitive because, in traditional morphometrics, each individual measurement was
often viewed as a trait in its own right. Even when analyzed multivariately, the individual
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traits retained their identity and biological meaning. Interpreting the results of a multivari-
ate analysis often involved relating the multivariate results to the correlations between
traits. As a result, one of the most important considerations that directed the section of
measurements was the biological meaning of that trait in the context of a given study. But

FIGURE 2.2 Two semilandmark measurement
schemes. The choice between them is essentially arbi-
trary because no anatomical features specify the location
of points along the curve.

FIGURE 2.1 Measurement schemes for the lower jaw of a squirrel. (A) Mental foramen; (B) landmarks on
photograph; (C) landmarks without the photograph; (D) landmarks plus semilandmarks.
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landmarks do not correspond to “traits” and landmarks are rarely meaningful as
individual points.

In geometric morphometrics, a configuration, not a landmark, is a datum. What we
measure on individuals is their configuration of landmarks. The “trait” might be the
impact of a mutation on the average configuration, or the impact of some experimentally
manipulated factor on the average configuration. Analyses of configurations are necessar-
ily multivariate, but it may be more useful to think of a configuration as a multidimen-
sional datum rather than as a collection of multiple variables. One reason for stressing the
point is that individual landmarks are not expected to be individually meaningful biologi-
cally; their function is to delimit where changes occur. It is the response of the configura-
tion to some factor that conveys biological meaning. Thus, when designing a measurement
scheme, what we are after is a configuration that allows us to delimit where those
responses occur. Landmarks should therefore provide a sufficiently comprehensive sam-
pling of morphology that the features of biological significance can be discovered. If you
are interested in the biomechanics of lever arms, then you should locate landmarks at the
endpoints of those lever arms else you will not have the data required to analyze them.
However, you will not lose or dilute biomechanical information by including other land-
marks of unknown relevance � if they are not functionally relevant, they will not covary
with measures of performance. However, if your only question is “What is the mechanical
advantage of this jaw compared to that one?”, then there is no reason to do a shape
analysis � the question you are asking is about mechanical advantage, not shape. As
Bookstein (1996) pointed out, geometric methods might be “overkill” in such purely bio-
mechanical studies. When you want to place those lever arms in a broader morphological
context, geometric morphometrics helps to provide one.

CRITERIA FOR CHOOSING LANDMARKS

Ideally, landmarks are (1) homologous anatomical loci that (2) provide adequate cover-
age of the morphology, and (3) can be found repeatedly and reliably. Two other criteria
may also be important under some conditions, that landmarks (4) do not switch positions
relative to each other and (5), in the case of two-dimensional (2D) landmarks, lie within
the same plane. That last criterion is the only one specific to two-dimensional data, and
information that is either lost by restricting landmarks to one plane or made difficult to
interpret when landmarks are not coplanar, is what makes three-dimensional data so
useful.

Homology

In the context of landmarks, the criterion of homology means that the points on one
specimen correspond (as the “same” point) to that point on all individuals. For example,
a landmark located in the middle of the mental foramen of the mandible of one individual
is homologous to a landmark located in the middle of the mental foramen of another
individual. Similarly, a landmark located in the middle of the mandibular foramen of the
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mandible is homologous to a landmark located in the middle of the mandibular foramen
of another individual. Conversely, a landmark located in the middle of the mental foramen
of the mandible of one individual is not homologous with a landmark located in the
middle of the mandibular foramen of another individual. The mental and mandibular
foramina do not correspond to each other, as may be obvious from the fact that they have
different names (it is even more obvious anatomically because one is located on the exter-
nal/lateral side of the mandible, the other on the internal/medial side; one is located ante-
riorly and the other posteriorly. That these two points do not correspond is obvious,
perhaps so obvious as to go without saying. But there are many examples of traditional
morphometric measurements that disregard homology, and it is in contrast to them
that the criterion of homology is so important for ensuring comparability of shapes.
For example, measurements such as “greatest skull breadth” or “least interorbital width”
may be taken between different pairs of endpoints in different specimens because they are
measured where the skull is widest, wherever that is, or where the interorbital region is
narrowest, wherever that is. The endpoints of those measurements need not correspond
one-to-one from one specimen to another; it is only that the length is greatest or least that
makes the measurements comparable at all. These measurements are not made between
homologous points and, in this context, the converse of “homology” is “not the same point”.

Calling landmarks “homologous” may seem to be a curious usage of the term for two
reasons. First, biologists often use homology for similarities due to common ancestry,
implying more than that the points correspond. Second, the term is usually applied to
structures rather than to points. If using “homology” for corresponding points bothers
you, you can always call them “corresponding” rather than “homologous” points.

In geometric morphometrics, homology has been stressed above all other criteria for
selecting landmarks for both mathematical and biological reasons. The mathematical
reasons are important to understand because semilandmarks, which are not usually
argued to be homologous biologically, are nonetheless treated as if they are homologous
mathematically. The mathematical issues are discussed in more depth in the next two
chapters, but you will likely select your landmarks before you read them so you need an
intuitive feel for the mathematical issues before choosing them. The primary mathematical
issue is that the coordinates of points (whether landmarks or semilandmarks) are treated
as if they correspond one-to-one when computing the difference between shapes. That is,
the coordinates are averaged, and deviations between individuals are quantified by sum-
ming the squares of the differences between the coordinates of the points. If the points in
one specimen do not correspond to the points in another, averaging them is like averaging
apples and oranges. The calculations make sense when each point on one specimen corre-
sponds to the same point on another; more specifically, when landmark 1 in one organism
corresponds to landmark 1 in another, as do landmarks 2 and so forth. That assumption
of correspondence is built into the methods whether they are applied to landmarks or
semilandmarks.

Semilandmarks are usually not regarded as homologous points. It is the curve that they
sample, not the semilandmarks individually, that are viewed as if corresponding one-
to-one. The positions of the semilandmarks along a curve are not viewed as informative
about shape and so information about their position along the curve will be removed
when removing other kinds of non-shape information from the coordinates. This is the
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major distinction between landmarks and semilandmarks � for landmarks, their position
(in all directions) contains information about shape. In contrast, for semilandmarks, their
position in the direction of the curve contains no information about shape. Once that non-
shape information is removed, semilandmarks are treated just like landmarks, meaning
that they are also matched up one-to-one when computing the difference between shapes.
For that reason, semilandmarks are treated as if they are homologous, and one criticism
of semilandmarks is that decisions about their homology are not based on comparative
anatomy, as in the case of landmarks, but rather are delegated to algorithms (Klingenberg,
2008). However, that contrast between landmarks and semilandmarks may be framed too
starkly because comparative anatomy is often not enough to establish the homology of
landmarks. For example, two points often used in studies of mandibular shape are the
superior and inferior “angular notches” (Figure 2.3A). These notches are inflection points
along curves whose curvature can vary considerably, even within species (Figure 2.3B,C)
and more so across disparate species (Figure 2.3B,D,E). The notches correspond as inflec-
tion points on the curves but it is not clear where the anatomically corresponding points
are along those curves. Comparative anatomy may suffice to establish the homology of the
notches, but it does not specify where, precisely, a homologous point can be found within
the notch.

FIGURE 2.3 Angular notches. (A) Angular notches shown on the mouse mandible; (B and C) mandibles
of two conspecific ground squirrels, Spermophilus beecheyi; (D) mandible of another ground squirrel,
Ammospermophilus leucurus; (E) mandible of a tree squirrel, Sciurus nayaritensis.
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Adequate Coverage of the Form

A second important criterion, arguably as important as homology, is adequate coverage
of the form or, as Roth (1993) put it, comprehensive coverage. The importance of this crite-
rion should be self-evident because we cannot detect changes in shape without data, and
the landmarks are the data. Additionally, we cannot find changes within particular regions
unless we have landmarks within them. One way to decide if you have met this criterion
is to draw a picture of the landmarks without tracing the rest of the organism or, as we
did above, removing the photograph and looking only at the configuration of the land-
marks. Another example is a squirrel scapula, one of the examples discussed later in this
chapter. Whereas in Figure 2.4A the form of the scapula is present, even if the outline of
the structure is erased, in Figure 2.4B, it is virtually impossible to tell that the structure is
a scapula. Given the landmarks shown in Figure 2.4B, we cannot tell what is happening
between the peripheral points (meaning those on the outline). Therefore, if there are any
localized changes in scapula shape, we will not find them.

Sometimes we cannot find landmarks where we need them. For example, there are no
discrete points just anterior and posterior to the eye of a piranha (another of the examples
discussed below). We need that information to analyze changes in relative size of the eye,

FIGURE 2.4 Landmark schemes for a scapula.
(A) The form of the scapula is evident in the land-
marks; (B) present even if the outline of the structure
is erased; in (B) the form of the scapula is barely
detectable in this configuration of landmarks.
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which is one of the most visually obvious ontogenetic changes in shape. Because we do
not want to sacrifice that information, we place points marking the anterior and posterior
boundaries of the structure. In effect, to obtain that information, we sample the same geo-
metric points in all specimens. In other cases, we cannot sample complex curves that lack
landmarks, as exemplified by the jaw (see Figure 2.1C). Thus, to obtain adequate coverage
of the form, we sample those curves with semilandmarks (see Figure 2.1D).

Repeatability

The third criterion for selecting landmarks is that they can be found reliably. If they
are difficult to locate even on the same specimen measured multiple times, they can
induce measurement error. Sometimes, these difficult points are easy to recognize even
before digitizing them; for example, the landmarks on the mandibular notches mentioned
above (see Figure 2.3). These landmarks are difficult to locate reliably for two reasons:
first, the landmarks are defined in terms of a change in curvature along curves that change
curvature more than once, so finding the landmarks requires assessing curvature by eye,
and recognizing which particular changes in curvature are the ones to digitize. Second,
the curvature (and where it changes) varies among individuals of the same species and
sometimes even between the two sides of the same individual. In the case of landmarks
such as these, the definition of the landmark may migrate over the course of digitizing
many specimens � the precise point that is recognized as the right change in curvature
may differ between the first and hundredth specimen digitized. Sometimes, the reliability
of a landmark is not so easily anticipated in advance of measurement. For example, some
points seem as though they ought to be difficult to find repeatedly, such as the anterior
and posterior points on the piranha eye, but they may actually be less prone to error than
points that are more discrete and well defined. Also, points that seem very fuzzy (such as
blurs on x-rays) can sometimes be more reliable than you might imagine. In the case of
landmarks that are obviously difficult to locate, such as those points on the mandibular
notches, it is important to check and recheck your digitizing, going back to the beginning
of the file and scrolling through to see if the definition of the landmark migrated. But for
others, it may be best to avoid prejudging them, and checking their repeatability
empirically.

Some landmarks are prone to measurement error in only one dimension because the
landmark is easy to locate along an axis, e.g. the anteroposterior axis, but difficult to locate
along another. This ambiguity along one direction can be a real problem for points that
might otherwise be well defined, such as those on a suture. Sutures that generally follow
a body axis sometimes wander, taking a complex path. It may be easy to pin down the
anteroposterior location of a point along the suture, but more difficult to decide its medio-
lateral position. When a landmark is difficult to find in only one direction, the error will
be concentrated in that direction, inducing biased rather than random error. Biased error
is a more serious problem than a large random error because biased error will look like
something that merits an explanation. However, the difficulty that you perceive in the
course of digitizing may not be reflected in the actual variability of the point. At the outset
of the analysis, before deciding that a point is unrepeatable in one or both directions,
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digitize it and then check its error. You can always delete it if you find that the error is
biased.

In some cases, it is not that the landmarks themselves are difficult to measure but rather
that they are subject to other sources of error, some of which are biased. One potentially
important source of measurement error is preservational artifact. One study of preserva-
tional artifacts affecting the variation of landmarks of the trilobite cephalon found that
compaction of shale-preserved specimens tripled the scatter of the landmarks around their
mean positions, but not randomly (Webster and Hughes, 1999). The more lateral land-
marks were most affected, as were the most convex forms. The technology used to capture
images and also to record the data can be important sources of measurement error. Even
very subtle variation in the orientation of a three-dimensional specimen can have visible
effects on the shape when it is projected onto the photographic plane. The distance
between the specimen and the camera can also be a source of measurement error; the pro-
jection of three-dimensional objects onto a plane may distort points at different
perpendicular (normal) distances from the plane, especially when the camera is too close
to the specimen (Mullin and Taylor, 2002). Parallax is always a concern when three-
dimensional specimens are projected onto a plane but three-dimensional measurement
systems (including computer tomography, laser scanning systems and articulating arm
digitizers) can also introduce error. One study of repeated measurements of a single
specimen (mounted in fixed position) found that the Polhemus 3Space digitizer produced
the same errors along all three axes, but the authors note that other approaches, such as
computer tomography, might differ in their resolution along the Z axis because that is the
axis on which the slices of the scan are stacked (Corner et al., 1992).

At the outset of any study, as part of the process of selecting landmarks, it is a good idea
to capture multiple images of the same specimen, repositioning it between each session,
and to measure each image multiple times so that you can assess the error introduced by
the image capture and measurement process. Because the magnitude and distribution of
measurement error may be related to the size and/or shape of the specimen, it is useful to
examine several specimens that span the variety of sizes and shapes that you will be analyz-
ing. If you have more than one instrument available to use, you can also check whether they
differ in the magnitude or distribution of measurement errors. We will return to the analysis
of measurement error, more specifically, of how its various sources can be decomposed by a
multivariate analysis of variance (MANOVA) in Chapter 9. If your preliminary assessments
of measurement error suggest that variation due to measurement error is large relative to the
variation of biological interest, we recommend imaging and measuring each individual
several times so that you can use the average value as your data.

Consistency of Relative Position

The issue, in this case, is landmarks that switch their position relative to each other.
This can occur even when changes in shape appear to be very modest, such as when a
foramen near a suture is sometimes anterior and sometimes posterior to it. These two
landmarks may thus move past each other. From the anatomy, it may not look like there
is much variation in shape because the bones do not differ in their proportions, what
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differs is only those two points that switch their positions. Figure 2.5 shows a manufac-
tured example, highlighting two landmarks that switch their position (Figure 2.5A). In
this case, the coordinates of the landmarks for four of the 28 specimens were simply
exchanged in the data matrix. The effect is fairly subtle; instead of the component that
accounts for approximately 13% of the variation in the actual sample (Figure 2.5B), there
is another that also accounts for approximately 13% of the variance (Figure 2.5C). The
effects, however, can be far larger, just like digitizing points out of order can produce
dramatic outliers.

Landmarks that switch position may seem to be a rather trivial problem, one that arises
rarely. Yet, when densely sampling a landmark-rich structure, it can become a real issue,
especially when many of the landmarks are located on sutures and foramina. You may
find this kind of variation interesting, but if not, you have two choices. The first is to
exclude one of the two landmarks from the analysis, and the other is to exclude some of
the individuals from the analysis.

FIGURE 2.5 Landmarks that switch positions. (A) The
landmarks that switch position; (B) the third principal com-
ponent, in the absence of any switch in position; (C) the third
principal component when the landmarks are switched.
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Coplanarity of Landmarks

This is the sole criterion that is specific to two-dimensional data, and it arises from the dis-
tortion caused by projecting a three-dimensional organism into a two-dimensional plane. To
minimize this distortion, specimens must be consistently oriented under the camera, and one
particular plane must be chosen for that orientation. Points not in that plane may be inconsis-
tently oriented or difficult to interpret. The two-dimensional analysis will suggest that the
points have moved within the plane of photography, but it is possible that they actually have
moved toward or away from that plane. What you will see is the projection of a change that is
actually in the third dimension onto the plane of the photograph. Foreshortening can look
like shortening. The distortions resulting from projection can be a serious problem, as it
turned out to be in the analysis of cotton rat (Sigmodon fulviventer) skull ontogeny (Zelditch
et al., 1992). One characteristic feature of mammalian skull ontogeny is the change in orienta-
tion of the skull base: points that initially are on the posterior end of the ventral surface move
dorsally, out of the picture plane. Some points could not be included in the data set because
they were not visible at all ages (in consistently oriented photographs) but worse, other points
apparently on the lateral boundary of the skull (in the photograph) are actually on the lateral
surface of the skull. It was not possible to tell if they moved in the anteroposterior and medio-
lateral directions (the plane of photography) or if they instead moved dorsoventrally. In hind-
sight, those lateral points should have been excluded as too ambiguous.

BOOKSTEIN’S TYPOLOGY OF LANDMARKS

Bookstein (1991) introduced an influential classification of landmarks into three catego-
ries: Type 1, Type 2 and Type 3 (see Roth, 1993, for another discussion of these types).
According to this scheme, Type 1 landmarks are optimal, Type 2 are more problematic
and Type 3 might not even be considered landmarks at all. The classification is based
on two interrelated considerations: one is that landmarks ought to be locally defined, the
other is the type of explanation into which they can enter. The first consideration is
relatively easy to summarize because it is a matter of the degree to which landmarks are
locally defined. The second consideration, however, is more difficult to summarize
because it depends on a classification of explanations.

Bookstein categorizes Type 1 landmarks as points at discrete juxtapositions of tissues,
which need not be juxtapositions of different tissue types � by his usage, the juxtaposition of
three bones is a juxtaposition of tissues, and a foramen is also a Type 1 landmark, although it
is not a juxtaposition of observed tissues so much as the consequence of the passage of neural
or vasculature tissue through the bone. Type 1 landmarks may be more clearly distinguished
as points whose definition refers solely to structures close to the point. For example, the inter-
section between three bony sutures is locally defined, as is a foramen. For Type 1 landmarks
you do not need to mention any structures far away from that point. They are surrounded by
tissue on all sides. At the other extreme are Type 3 landmarks. The definition of these points
depends on structures far removed from the landmark, and meaningful variation is usually
limited to a single direction, the one stipulated by the definition. Type 3 landmarks are often
constructed geometrically. For example, Figure 2.6 shows a classic measurement scheme for
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the mouse mandible (Atchley et al., 1985). One of the measurements is the length of the angu-
lar process, which is the Euclidean distance of a line segment that extends from the midpoint
of a line extending from landmarks 1 and 2, to the midpoint of a line extending from land-
marks 3 to 19. These midpoints, shown as asterisks in Figure 2.6B are Type 3 landmarks.
Another measurement is of the incisive process, which is defined as the shortest distance
from landmark 8 to a line extending from landmarks 4 to 6. The point at which those two lines
intersect is also a Type 3 landmark. Type 2 landmarks are intermediate between these
extremes. They are locally defined, but not as locally as Type 1 landmarks, and they often
refer to geometric constructs, but these constructs are the tip of a structure, a bulge, or local
maxima or minima of curvature. All but two of the landmarks shown on the mandible are
Type 2 (the exceptions are the landmark at the emergence of the incisor from the alveolar
bone, and the point on the intersection between the posterior of the articulating surface of the
condyle and the condylar process, although both of these could be regarded as Type 2 land-
marks because their position depends, at least in part, on the orientation of the specimen.

As well as ranking these types according to the localization of their definining criteria,
Bookstein (1991, pp. 64�66) also distinguishes them according to their explanatory role.
In his view, Type 1 landmarks can enter into familiar valid functional explanations, more
specifically, the accounts of a deformation, such as conservation or optimization of bio-
mechanical strength or stiffness under loading, or conservation of enclosing structures
under changes in their content. Type 1 landmarks allow you to identify directions of forces
that impinge on a structure, or to recognize the effects of processes moving the landmarks,
being surrounded by tissue on all sides. Type 2 landmarks lack information from sur-
rounding tissues in at least one direction. These are often the points at which forces are
applied but, in the absence of information from at least one direction, it is not possible to
distinguish displacements lateral to the boundary direction from a combination of inward
and outward displacements. Type 3 may not be meaningful as landmarks and their

FIGURE 2.6 Landmarks on a mouse mandible.
(A) Schematic showing the locations of landmarks; (B) two
measurements defined by Type 3 landmarks (represented
as asterisks). (After Atchley et al., 1985. Genetics of mandibu-
lar form in the mouse.)
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displacements are meaningful in only one direction (along the length of the defining seg-
ment). For example, a Type 3 landmark could be defined as the point furthest away from
some structure (e.g. the hypoglossal foramen) in the direction parallel to the skull midline
axis. That point has only one real coordinate (the other is fixed by the definition of the
landmark) so the only meaningful displacements of the point are in the direction of the
one free coordinate. Semilandmarks are similarly deficient, having only one meaningful
direction of change because any variation in their position along the curve is arbitrary.

This classification discourages the use of both Type 2 landmarks and semilandmarks but,
in our experience, Type 2 landmarks are at least as valuable as Type 1 for developmental and
biomechanical studies. Landmarks along the boundary of a growing structure, which are
often Type 2, may even provide most of the information available about developmental pro-
cesses when growth occurs by deposition at the margins (i.e. by processes such as periosteal
growth). Type 1 landmarks that are surrounded by tissue get trapped in the growing extracel-
lular matrix and may therefore be nearly invariant in their position � their displacements are
due to growth happening elsewhere. Landmarks along the periphery are the ones that record
the changes in proportion caused by bone deposition. Biomechanical studies similarly benefit
from information about the locations where the forces are applied. The explanations sup-
ported by Type 2 landmarks may not be as elegant as accounts of deformations, but to serve a
useful explanatory role, landmarks should provide a rich description of the effects of a pro-
cess. They should covary with the process and inform us about its effects on shape. That Type
2 landmarks and semilandmarks serve that purpose should be evident in Figure 2.7, which

FIGURE 2.7 Ontogenetic shape change of the mandible
of a ground squirrel, Spermophilus beecheyi. (A) Landmark
and semilandmark measurement scheme (the larger dots
are the landmarks); (B) ontogenetic change described by
landmarks alone; (C) ontogenetic change described by land-
marks, supplemented by semilandmarks.
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shows the latter part of postnatal ontogeny of a ground squirrel mandible. The few Type 1
landmarks are the mental foramen and juxtapositions between teeth and bone (Figure 2.7A).
These are nearly invariant over ontogeny (relative to each other and to the centroid of the
form). The changes in proportion are evident in the regions sampled by Type 2 landmarks
(Figure 2.7B) and a far richer description is obtained when that sparse set of landmarks is sup-
plemented by semilandmarks; there are dramatic changes in the proportions and orientations
of the angular and coronoid process (Figure 2.7C).

EXAMPLES: APPLYING IDEALS TO ACTUAL CASES

Having discussed some general principles and theory, we now turn to specific and
concrete examples of data. They display an obvious vertebrate bias, especially a bias
towards mammal skeletons. That is because these examples are taken from our own
work rather than from a review of the literature. We focus on our own examples for
two reasons. First, we can explain our own reasoning. Second, because we have the
data for these examples, we can use that data to demonstrate methods throughout this
book.

Landmarks on the Lateral Surface of the Squirrel Scapula

Figure 2.8 shows the major anatomical features of a tree squirrel scapula. Also shown
are 12 landmarks that were digitized in a study of changes in scapula shape associated
with the evolution of burrowing in chipmunks and ground squirrels (Swiderski, 1993).
Studies of scapulae of other mammals have found important changes in the blade,
acromion and metacromion associated with functional shifts (Oxnard, 1968; Taylor, 1974;
Stein, 1981). These same studies found little or no change in the coracoid process and the
bell-shaped structure that articulates with the humerus (hidden behind the metacromion

FIGURE 2.8 The major anatomical features of a tree squirrel scapula,
shown are the 12 landmarks analyzed in a study of the evolution of bur-
rowing in chipmunks and ground squirrels (Swiderski, 1993).
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in Figure 2.8). A preliminary survey of squirrel scapulae indicated that they may have a
similar anatomical distribution of changes. This pattern dictated that the squirrel scapulae
should be digitized from the lateral view, because this is the only view in which the blade,
acromion and metacromion could be seen in all taxa. Fortunately, the one feature of the
bell that was considered potentially relevant to a functional analysis was also visible in
the lateral view. That feature, the “neck” between the blade and the bell, is expected to
change in thickness to reflect the magnitude of the forces transmitted to the scapula from
the humerus. Thus, before any decisions were made about inclusion of specific landmarks,
functional considerations were used to decide which general aspects of scapula shape
would be analyzed.

The anticipated importance of changes in the acromion and metacromion meant that
concerns about the distortion of three-dimensional aspects of shape could not be ignored,
and also that landmarks could not be deleted if the distortion was expected to be large.
Instead, concerns about distortion were addressed by standardizing the protocol used to
capture the images that were digitized. As is usual for morphometric analyses based on
photographs or video images, the scapula was placed in a standard orientation so that
differences in orientation would not be interpreted as differences in shape. In addition,
the distance of the camera lens from the scapula was adjusted for each specimen so that
the blade always occupied the same proportion of the field. Then, if the height of the spine
and sizes of the acromion and metacromion were proportional to the size of the blade,
the acromion and metacromion would also occupy a constant proportion of the field.
More importantly, the pattern of landmark displacement that would occur if these proportions
changed could be predicted and tests for these patterns could be performed. No evidence of
such patterns was found in the data.

After deciding which view to digitize, a major concern was coverage: finding enough
landmarks to represent adequately the shape of the scapula. Structurally, the scapula is
rather simple, which means there are few points that can be uniquely defined. This is
especially true of the main portion of the scapula, the semicircular or triangular “blade”;
the blade is nearly flat and has only two ridges crossing it � the large scapular spine on
the lateral surface, and the smaller subscapular ridge on the medial surface. The margin
of the blade is also rather featureless, having few corners and no spines, only more ridges
or thickenings.

Despite the shortage of potential landmarks, it was still considered important to
define them so that they could reasonably be considered homologous. For example, the
ends of ridges may seem to be good landmarks, but quite often these are gently tapered,
making it difficult to define precisely where they end. Usually, when a ridge ends
abruptly, it ends at an intersection with some other structure. On the scapula blade,
landmarks 8, 9 and 10 are points where two ridges intersect. Landmark 6, on the meta-
cromion, is another intersection, marking the attachment of the metacromion to the
spine. Landmarks 7 and 11 are points on the margin of the blade where the end of a mar-
ginal ridge is associated with a corner. Landmark 5, on the metacromion, is another cor-
ner associated with the end of a marginal ridge. Landmark 1 is one of the few places on
the blade where a ridge (the scapular spine) ends abruptly without intersecting another
structure.
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Concern for homology extended to the corners as well as the ends of the ridges.
Landmarks 2, 3 and 4 are at the only corners that are not associated with the ends
of ridges. Other anatomical information was used to infer their homology. Landmarks 2
and 3 are corners where the acromion terminates in a flat surface that articulates with
the clavicle. The corner labeled as landmark 4 appears to mark the boundary between
the acromion and metacromion. This interpretation is reinforced by the point’s proximity
to the line of the scapular spine, which separates anterior and posterior components of
both the scapula and the attached muscles.

The grounds for inferring homology are weakest for landmark 12. This is the only point
on the articulating structure, the “bell”, that could be seen in lateral view in all taxa. If more
points on this structure were visible, landmark 12 might not have been used. This point is
identified only as the cranial edge of the neck, which is the narrowest region between the
blade and the bell of the articulating structure. This criterion for recognizing a landmark is
harder to apply than the criteria for recognizing the other 11 landmarks because the bound-
ary between bell and blade is not marked by a corner or other distinctive feature. In this
regard, the neck of the scapula may seem similar to the least interorbital width of the skull,
as being poorly defined and of doubtful homology. However, unlike least interorbital
width, the neck of the scapula marks the boundary of two functionally distinct components
of the scapula. In addition, analysis of digitizing error indicated that this point was not sub-
stantially harder to locate than other landmarks. Therefore, doubts about the homology of
this point were set aside in favor of having at least one landmark on this structure.

Landmarks on the External Body of Piranhas

Figure 2.9 illustrates the landmarks used in several studies of shape change in piranhas.
These points were originally intended for analyses of shape by trusses (see Strauss and
Bookstein, 1982), so they were chosen to allow for constructing a series of boxes and
diagonals over the form. In addition, because the truss analysis was to be compared

FIGURE 2.9 Landmarks on the external
body of a piranha, used in several studies
of ontogeny and disparity of piranhas (e.g.
Fink and Zelditch, 1995, 1996; Zelditch et al.,
2000, 2003a).
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to more traditional measurement schemes in ichthyology, some landmarks were chosen to
allow duplication of those measures. Traditional measurements between these landmarks
were used in a systematic study of Pygocentrus (Fink, 1993), and in several geometric
morphometric studies of the evolution of piranha ontogeny and the diversification of their
body forms (e.g. Zelditch et al., 2000, 2003a).

Selecting landmarks on the lateral body of piranhas is relatively straightforward
because specimens are essentially two-dimensional. Most of the shape variation can be
seen in that view, and little distortion is caused by viewing the animal in a plane.
Specimen bending can occur at fixation or during preservation, and such bent specimens
were not included in analyses unless they could be manually straightened with no result-
ing distortion in the lateral body shape. Data acquisition consisted of placing the specimen
in a standard view, using a specially designed container that kept the animal’s midline in
the plane defined by the top edges of the container. A piece of metric graph paper was
placed on the container’s edge in the same plane for calculating size. In some cases, insect
pins of various sizes were used to make landmarks more visible. The camera was placed
so that each specimen occupied approximately the same area in the viewing field, in order
to minimize distortion.

There are few landmarks on the post-cranial lateral body of piranhas, and almost all
landmarks chosen are from around the perimeter of the body. Had the data been taken
from radiographs, some internal osteological landmarks could have been used. However,
it was decided that data would be taken from entire specimens, partly to facilitate applica-
tion to identification keys. Most of the landmarks chosen are at boundaries or extremes of
structures, or are skeletal features accessible without x-rays.

Landmark 1 represents the anterior point of the head, and is taken where the two
premaxillary bones articulate at the midline. Because this point is directly on a vertical
from the plane of the specimen, no special marking is required. The landmark involves
soft tissues, and thus could be affected by desiccation of the specimen.

Landmarks 2, 3, 7 and 12�16 all represent skeletal features, representing extremal
points, intersections of structures, or borders of bones. Landmark 2 is the anterior border
of the epiphyseal bar � a small extension of bone that spans a large fossa in the dorsal
neurocranium � and was chosen to provide information on the shape of the head. The
landmark is found by inserting a pin through the skin of the midline dorsal to the orbital
region, where the pin just penetrates past the bar into the brain cavity. Although this land-
mark is constantly available in piranhas, some related fishes show ontogenetic change in
the width of the bar, such that the bone grows anteriorly as the fish grows, independent of
head shape changes. Landmark 3 lies at the posterior tip of the supra-occipital bone of the
neurocranium. It lies just under the skin at the dorsal midline, and is found by moving a
fingernail along the midline until the junction between bone and muscle is found. A pin
is inserted at that point for purposes of digitizing. Landmark 7 represents the posterior
termination of the hypural bones of the caudal skeleton, traditionally a point used in the
calculation of standard length (tip of snout to base of caudal fin). In piranhas, there is a
concavity in the hypural bones at the lateral midline such that the bone lies anterior to the
rest of the posterior border of the caudal skeleton, so the actual point measured is where
the bone would be in other teleosts. This is less problematic than it might seem, since the
actual measurement is done at the area where the caudal fin base can be bent laterally.
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Until some experience in finding this landmark is gained, it may be difficult to be consis-
tent in reproducing this point. An inexperienced person usually has error in the anteropos-
terior axis. This is a landmark for which some argument regarding homology must be
made. This is because the internal skeleton may not be consistent with the point used
externally. However, consistently measured as the posterior termination of the body at the
lateral midline, the point may be considered homologous.

Landmark 12 represents the ventral side of the articulation between the quadrate bone
and the mandible. It thus lies lateral to the midline, although it usually lies on a vertical
from the ventral midline. This point is located by placing a fingernail in the joint between
the two bones, and then a pin is inserted in the joint. Landmark 13 lies at the intersection
of the maxillary bone and the infraorbital bone that defines the “cheek” area of the face.
The point lies well lateral to the midline, but marks an important area of the skull, approx-
imating the length of the upper jaw. This point is marked by slipping the pin under the
infraorbital bone adjacent to the posterior border of the maxillary. This landmark is com-
posed of an extreme point (the posterior maxillary border) as well as an intersection of two
structures. The homology of this landmark may be questioned. Landmarks 14 and 15 capture
the width of the bony orbit. Each point lies at the extreme of the orbit along the anteropos-
terior body axis. Both of these landmarks are of questionable homology, but are taken
because the eye has been shown to be highly allometric and has been used in traditional
measurement schemes. With practice, these landmarks can be taken with little error.

Landmark 16 is perhaps the most difficult to justify in this analysis. It occupies the
most posterior point of the bony opercle, the bone that forms the bulk of the gill cover,
and its original purpose was to duplicate the landmark used in traditional ichthyology
measurements of head length. This landmark was expected to be an articulation point
between the opercle and subopercle bones. However, comparisons among several species
showed that the position of the articulation varied excessively, and inaccurately repre-
sented the posterior of the head. The landmark now taken is simply the extreme along the
bone border as measured from the tip of the snout. No reasonable homology argument
can be made for this landmark; it may be that it is partially redundant with landmark 11.
However, our analyses have shown that this landmark can be consistently digitized and is
often informative about alterations in head shape.

Landmarks 4�6 and 8�11 represent points where the fins insert on the body, at the
anterior or posterior of the fin base. In most cases, these points are measured where the
bony fin ray intersects the body. Together, these landmarks provide a great deal of infor-
mation on post-cranial body shape. Landmarks 4 and 5 lie at the anterior and posterior of
the dorsal fin base, respectively. Ontogenetic variation in anterior fin ray morphology can
reduce the repeatability of landmark 4, as discussed in Fink (1993).

Landmarks 8 and 9 represent the posterior and anterior of the anal fin base. Often the
fin is collapsed, and a pin must the inserted to make landmark 8 visible. In some piranhas,
there are accessory spines at the anterior of the fin base, and they are not included.
Landmarks 10 and 11 represent the insertion onto the underlying skeletal girdles of the
pelvic and pectoral fins, respectively. Both lie dorsolateral to the ventral midline.
Landmark 10 is easily visible in larger specimens but, in some smaller specimens, the
transparency of the fin makes it difficult to find; in this case it can be located by raising
the fin laterally and placing a pin at the anterior fin-ray’s base.
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Landmark 6 lies at the posterior base of the fleshy adipose fin, where the fin meets the
skin of the dorsal midline. This point may be difficult to locate unambiguously because
it may be obscured by the fin overlapping the skin of the peduncle, so a pin is inserted to
mark its location for digitizing. In some of our studies we have attempted to use the ante-
rior insertion of the adipose fin, but its broadly curving profile in many species renders it
too difficult to repeat.

Note that landmarks 9�12 represent the ventral area of the body form, but they do not
capture the actual convex belly shape of these fishes. A great deal of effort was spent
in attempting to find appropriate landmark locations along the ventral profile, but no
repeatable and consistent landmarks were found that could be located on all piranha species.

Landmarks on the Skull of Sigmodon fulviventer
and Mus musculus domesticus

The landmarks on the skull of cotton rats, Sigmodon fulviventer (Figure 2.10), were
selected to cover the skull as evenly as possible for the purpose of determining whether

FIGURE 2.10 Landmarks on the skull of cotton rats, Sigmodon
fulviventer and Mus musculus domesticus. (A) Landmarks used in
the initial analysis of S. fulviventer (Zelditch et al., 1992, 1993;
Figure 2.11A); (B) landmarks added for a comparative study of
S. fulviventer and M. m. domesticus; (C) landmarks used in the analysis
of M. m. domesticus.
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ontogenetic changes in skull form are spatially integrated or localized (Zelditch et al.,
1992) and to study developmental constraints on variability in that species (Zelditch et al.,
1993). Because the studies were designed to analyze the ontogeny of skull shape and
its variation, and the data come from photographs, the only landmarks that could be
included are the ones that are visible in (approximately) the same plane at all ontogenetic
stages. Mammalian skulls are highly three-dimensional structures, and the cranial base
rotates during ontogeny, so landmarks that are parallel to the camera at one stage may
rotate out of that plane later. This produces what appears to be a change in shape (within
the plane). However, omitting all the landmarks that might be affected by such a rotation
would mean losing vital information about cranial length and width. The landmarks most
strongly affected by the extension of the cranial base are the ones marking the juncture
between the anterior and posterior cranial base, as well as those located on the posterolat-
eral braincase. Consequently, landmarks were placed on those locations even though that
complicates distinguishing between changes in shape caused by differential growth and
apparent changes in shape due to rotation in the third dimension.

A subsequent study was undertaken to compare skull shape ontogeny of S. fulviventer
to that of another rodent, the house mouse Mus musculus domesticus. A major objective
of that study was to examine the relationship between life-history strategy and timing of
skull morphogenesis (Zelditch et al., 2003b). Ideally, we would have sampled both skulls
densely, selecting homologous landmarks that provide a richly detailed description of the
ontogeny of both species. However, some landmarks could be seen in only one species or
another. For example, in S. fulviventer we can locate a landmark on the posterior of the gle-
noid fossa, but the curve of the glenoid is so smooth in M. m. domesticus that we cannot
find a distinct point anywhere comparable to the glenoid landmark of S. fulviventer. To
capture information about skull width in the region of the zygomatic arch of M. m. domes-
ticus, a different point had to be chosen, complicating the comparative analysis. Several
other points that are readily visible in S. fulviventer also cannot be found in M. m. domesti-
cus. However, the problem posed by the inability to find landmarks in M. m. domesticus
that are homologous with those already measured in S. fulviventer is partly mitigated
because there are landmarks in S. fulviventer that had not been previously sampled,
but which can be recognized in both species. Thus, in the comparative study, additional
landmarks were sampled on S. fulviventer. Even so, the set of landmarks common to both
species comprises a rather sparse sample of each skull. Therefore, analyses were done
separately for each species, using the landmarks providing the densest coverage possible
for each species, and the comparative analyses exploited the subset of landmarks common
to both.

The original analyses of S. fulviventer (Zelditch et al., 1992, 1993; see Figure 2.10A)
include 16 landmarks. Landmark 1 is the lateral margin of the incisive alveolus where
it intersects the outline of the skull in the photographic plane (IN). Landmark 2 is the ante-
riormost point on the zygomatic spine (ZS). Landmark 3 is the premaxilla�maxilla suture
where it intersects the outline of the skull in the photographic plane (PML). Landmark 4
is the premaxilla�maxilla suture lateral to the incisive foramen (PMM). Landmark 5 is
the posteriormost point of the incisive foramen (IF). Landmark 6 is the median mure of
the first molar (M1). Landmark 7 is the posterolateral palatine pit (PP). Landmark 8 is the
junction between squamosal, alisphenoid and frontal on the squamosal� alisphenoid side
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of the suture (AS). Landmark 9 is the midpoint along the posterior margin of the glenoid
fossa (GL). Landmark 10 is the anteriormost point of the foramen ovale (FO). Landmark
11 is the most lateral point on the presphenoid�basisphenoid suture where it intersects
the sphenopalatine vacuity in the photographic plane (SB). Landmark 12 is the most lateral
point on the basisphenoid�basioccipital suture (BO). Landmark 13 is the hypoglossal fora-
men (HG). Landmark 14 is the juncture between the paraoccipital process and mastoid
portion of the temporal bone (OC). Landmark 15 is where the premaxilla-maxilla suture
intersects the midline (PMI). Landmark 16 is the posterior palatine foramen (PF).

Several landmarks were added to these in the later study, designed to compare S. fulviventer
to M. m. domesticus (Zelditch et al., 2003b). These additional landmarks (see Figure 2.10B)
include the juncture between the incisors on the premaxillary bone (IJ), the midpoint of the
basisphenoid�basioccipital suture along the sagittal axis (BOM), the midpoint of foramen
magnum (FM), the juncture of mastoid, squamosal and bullae (MB) and the juncture
between the mastoid and the medial end of the auditory tube (AM). The landmarks of
M. m. domesticus include a subset of the original Sigmodon landmarks, plus the newly added
ones, and a point at the interior corner formed by the intersection of the zygomatic arch
with the braincase (ZA) (see Figure 2.10C).

Three-Dimensional Landmarks on a Marmot Skull

As stressed in the previous example, the mammalian skull is obviously not a two-dimen-
sional structure. Like many structures of interest to biologists, the marmot skull is not only
three-dimensional (Figure 2.11A) but also has relatively few landmarks (Figure 2.11B). The
marmot skull is strongly curved anteroposteriorly and mediolaterally, so features on the
same bone may be as far apart in the dorsoventral dimension as they are in the mediolateral
or anteroposterior dimensions. In addition, the skull is composed of a small number of rela-
tively large bony plates, so points that can be used as landmarks are sparsely distributed,
occurring primarily at locations where at least three bones meet.

Landmarks on a Squirrel Mandible

The landmarks on the eastern fox squirrel mandible (Sciurus niger, Figure 2.12) are a
general scheme for analyzing mandibular development, modularity, and evolution. The
rodent mandible has become one of the favorite model systems for studies of complex
morphologies, especially for studies of developmental and evolutionary modularity
(e.g. Atchley and Hall, 1991; Cheverud et al., 1991; Mezey et al., 2000; Ehrich et al., 2003;
Klingenberg et al., 2003; Monteiro et al., 2005; Marquez, 2008; Zelditch et al., 2008, 2009;
Monteiro and Nogueira, 2009; Willmore et al., 2009). The attraction of this model system
lies partly in the contrast between its developmental complexity and its structural and
functional integration (Atchley et al., 1985; Atchley and Hall, 1991). How that integration
could be achieved developmentally, and how it facilitates and/or constrains mandibular
evolution are questions long motivating studies of rodent mandibles. One of the reasons
for selecting the mandible as the model system for these studies is that its development
is relatively well understood, although much remains to be explained. The mandible is
also interesting from a functional perspective because it is obviously crucial for feeding
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function; motivating studies of mandibular shape are questions about the evolutionary
relationships between mandibular form, function and ecology and about the discrepancies
between morphological and biomechanical disparity (e.g. Velhagen and Roth, 1997;
Caumul and Polly, 2005; Barrow and Macleod, 2008; Michaux et al., 2008; Perez et al., 2009;
Swiderski and Zelditch, 2010).

The mandible is not only interesting from a variety of biological perspectives, it is also
apparently quite simple to analyze, being a single bone that is nearly two-dimensional.
However, as may already be evident from comments about mandibular landmarks
earlier in this chapter, the mandible lacks landmarks where they are most needed. In the
case of studies of mandibular function, the lack is most significant in the regions where
muscles insert. For studies of integration and modularity, the lack is more widespread;
such studies assess the covariances within hypothesized modules relative to covariance
between them. Thus, every module needs to be sampled densely enough to be able to

FIGURE 2.11 Landmarks for a three-dimensional analysis of marmot skull shape. (A) A marmot skull; (B) the
configuration of three-dimensional landmarks.
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assess the within-modular covariances. That obviously requires having more than one or
two landmarks per module. A classic hypothesis of mandibular modularity posits six
such modules (Atchley and Hall, 1991), but there are only 15 landmarks in the entire
data set, and four of them are within one hypothesized module (the molar alveolus) and
three are within another (the condyloid process). By simple arithmetic, it is obvious that
the remaining eight landmarks cannot be enough to sample the other four hypothesized
modules.

The landmark scheme shown in Figure 2.12 is designed to analyze modularity, both
developmental and evolutionary, for dissecting the developmental origins of morphological
disparity and for exploring the evolution of jaw function in relation to ecology. Because
these are interrelated issues, a single scheme is needed that can be applied across disparate
morphologies without sacrificing the ability to detect subtleties of intraspecific variation.
This scheme has evolved; two prior studies used different landmarking schemes. The initial
one was designed for a myomorph, the prairie deer mouse Peromyscus maniculatus bairdii
(Zelditch et al., 2008) and then the analysis was extended to a sciuromorph, the eastern fox
squirrel, Sciurus niger (Zelditch et al., 2009). Myormorphs and sciurumorphs differ in the
number of cheek teeth so the scheme was modified to include the premolar, but the more
consequential difference is in the position of the landmark on the ventral curve of the ramus
(see Figure 2.12, landmark 14). In deer mice, there are two points where the landmark could
have been located; one is located where the curve of the mandible ceases to follow the curve
of the incisor and instead follows the curve of the angular process; this was the boundary
between incisor and ramal modules. No landmark was placed more proximally, at the most
anterior point on the angular process. The scheme devised for the sciuromorph included
two ventral landmarks, one that marked that transition in curvature from incisor to

FIGURE 2.12 The major anatomical features of
the rodent mandible and the landmarks used in
studies of mandibular developmental, modularity
and evolution.
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ramus (which is located considerably more anteriorly in the fox squirrel than deer
mouse) and the other at the most anterior angular point. Efforts to reconcile these two
schemes and to apply it to other squirrels revealed the difficulty of designing one
general-purpose scheme for rodent jaws. That difficulty arises from the combination
of sparse landmarks and morphological disparity. That disparity makes the mandible
interesting but it also makes it difficult to rely on Type 2 landmarks that are defined by
inflection points along curves. Those inflection points, when visible at all, are not neces-
sarily in corresponding anatomical regions. Thus, the scheme that we devised has only
15 landmarks and relies heavily on semilandmarks.

The first two landmarks are the points at which the incisor emerges from the alveolus,
marking the upper and lower edges of the alveolar opening. Landmark 3 is the mental
foramen. Landmark 4 is a point on the masseteric fossa where it changes direction � the
most anterior point of the masseter muscle attachment. This point is often difficult to
locate reliably because the masseteric fossa is often effaced, the change in direction is not
always abrupt, and seeing it clearly depends on the depth of field and lighting, but photo-
graphing the mandible to make this point most visible would make other points difficult
to visualize. Landmark 5 is on the molar alveolus between the fourth premolar (p4) and
the first molar (m1), and landmarks 6 and 7 are also on the molar alveolus, 6 is between
m1 and m2, and 7 is at the midpoint of m2. Landmark 8 is the “tip” of the coronoid pro-
cess although, in many species, this process does not taper to a point but rather ends
bluntly. The landmark is then placed at the midpoint of the blunt end. The next two land-
marks are on the condyle, the part that articulates with the upper skull to form the jaw
joint. Landmark 9 is on the anterior of the condyle and landmark 10 is at the posterior end
of the articulating surface. Landmark 11 is at the posterior “corner” of the angular process
which is the most posterior point of the superficial masseter muscle attachment.
Landmark 12 is another point on the condyle, the tip of the zygomaticomaseteric fossa.
This point, like others that are out of anatomical order were added after finding that the
original scheme did not suffice. Landmark 13 is on the molar alveolus at the midpoint of
p4. The reason for using the midpoint of the tooth rather than its most anterior point is
that the alveolar bone is sometimes so heavily eroded that there is no bone at the anterior
point of the tooth. Using that point would mean having to find a point on the tooth where
the alveolar bone would be had it not eroded. Landmark 14, the most difficult one to
locate reliably, is on the ventral margin of the angular process, where the ramus curves
towards the angular process (this marks the boundary between ramus and angular pro-
cess). The landmark is the most anterior point that is definitively on the angular process.
Landmark 15 is the most anterior point on the base of the coronoid process, where it
departs from the plane of the molar tooth row (it forms a “V” with alveolus).

Given such a sparse and uneven coverage of the jaw, and the lack of landmarks where
we need them, we sampled the six complex curves as semilandmarks. In Figure 2.12, one
curve may seem too densely sampled � the one between landmarks 8 and 9. It hardly
takes 14 semilandmarks to describe the shape of that curve. But that is because the land-
mark scheme is shown on a tree squirrel’s mandible. In other squirrels, such as the ground
squirrels and chipmunk, shown in Figure 2.13, that coronoid process is far longer and the
curve is much deeper. The measurement scheme is designed to capture that kind of infor-
mation about jaw shape regardless of where it occurs.
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DESIGNING YOUR OWN MEASUREMENT SCHEME

None of our examples will provide much guidance if you are trying to find landmarks
on a tadpole, a raptorial appendage of a shrimp, a fiddler crab carapace, trilobite cephalon,
a flower, a tooth or an insect wing, or any of the great variety of other systems.
Fortunately, there are numerous excellent examples of landmark-based studies of these
and other systems in the recent literature. In fact, there are far too many to provide a com-
prehensive list of good examples, so we mention a few recent studies. Morphometric stud-
ies of tadpoles are difficult in light of their sparse landmarks, but thoughtful analyses
have been done that look at the relationship between body form and spring speed
(Arendt, 2010) and a seven-year investigation into the associations between year-to-year
changes in shape and pond environments (Van Buskirk, 2009). A landmark-based analysis
of functional modularity in the power-amplification system of mantis shrimp raptorial
appendages tested the hypothesis that each component of that functional system constitu-
tes a developmental module (Claverie et al., 2011). The spatial structure of geographic var-
iation of fiddler crab carapace shape was examined to test whether geographically
widespread species exhibit more intraspecific variation and morphological divergence
(Hopkins and Thurman, 2010). Several studies have used landmark-based morphometrics
to examine the trilobite cephalon, including its ontogeny (Kim et al., 2002; Webster, 2007,
2009) and variation along an environmental gradient (Webber and Hunda, 2007). Tooth
shape has been analyzed two-dimensionally in several studies (Caumul and Polly, 2005;
Wood et al., 2007; Laffont et al., 2009; Piras et al., 2010) and there are now also studies of
three-dimensional tooth shape (Skinner et al., 2008; Singleton et al., 2011). Corolla shape
has been the focus of recent studies exploring its genetic covariance structure in the mono-
carpic herb Erysimum mediohispanicum (Gomez et al., 2009) and the adaptive significance of
its bilateral symmetry in the same species (Gomez et al., 2006). Insect wings have been the

FIGURE 2.13 Landmarks and semilandmarks shown on the jaws of four squirrels. (A) Spermophilus beecheyi;
(B) S. lateralis; (C) Ammospermophilus leucurus; (D) Tamias alpinus.
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focus of several studies, including one that examined two factors that might shape dragon-
fly wings: long-distance migration and high-maneuverability mate guarding (Johansson
et al., 2009), the impact of temperature and insertional mutations of 16 genes involved in
the formation of the Drosophila wing on wing shape, its variance and developmental stabil-
ity (Debat et al., 2009) and the modularity of insects wings (Klingenberg and Zaklan, 2000;
Klingenberg et al., 2001). An especially challenging problem for landmark-based studies
was confronted by Benitez-Vieyra and colleagues (2009) who analyzed sexual mimicry in
orchids. The orchid’s flowers attract sexually excited male wasps that pollinate them;
although chemical signals play a major role in attracting the wasps, the question
addressed by this study is whether plants that are shaped more like female wasps are
favored. The authors thus had to find landmarks on the distal part of the orchid labellum
corresponding to those on the head and most of the thorax of the wasp!

Many more examples of measurement schemes can be found by searching on “geomet-
ric morphometrics” and a keyword relevant to your study, such as “geographic variation”,
“ontogeny”, “quantitative genetics” or “phenotypic plasticity” or the name of a study sys-
tem. Reading several of them before you begin your study can help solve one of the major
problems confronting a researcher, that you need to know how to measure your organisms
before you can analyze your data but you may not determine what you need to measure
until you finish your data collection. Fortunately, this is not as insurmountable a problem
as it may appear to be even if the relevant literature is sparse. That is because the process
of digitizing helps you discover where that variation is. In general, by the time that you
have finished digitizing (and redigitizing) your specimens, you will not be surprised by
the results. That is especially true if you use one of the nice features of the most widely-
used digitizing program, tpsDig (discussed in more detail in the workbook). That feature
is the “template mode” which allows you to copy the landmarks from one specimen to the
next. You need only to reposition them. That ability to copy all the landmarks, in approxi-
mately the correct positions, is very useful when your landmarks are not in a sensible
anatomical order; one of the common measurement errors is to digitize landmarks out
of order. But the template mode is not only a convenience, it is also a way to discern what
varies. Once you have positioned and scaled the copied landmarks to suit the photograph
onto which they are copied, you will find that some landmarks need very little adjustment
but others regularly do. As you scroll through the images, copying and adjusting the
landmarks, you will soon recognize where the variation lies. You can thus design your
measurement scheme by a pilot study, which beings with a preliminary set of landmarks,
perhaps based on a published study, which you modify by adding or repositioning land-
marks and adding curves, until you can measure the variation that you see. As should be
evident from at least two of the examples above, the skull landmarks of the two rodents,
cotton rat (S. fulviventer) and laboratory mouse (M. m. domesticus), as well as the mandibular
landmarks of rodents, measurement schemes evolve.

A pilot study will be especially valuable if you plan to obtain three-dimensonal data
directly from specimens using devices such as a Reflex Microscope or Microscribe (see the
workbook for summaries of methods for capturing three-dimensonal coordinate data).
Such devices offer less flexibility than other technologies that produce reconstructions of
the three-dimensonal images whose coordinates can be digitized. When all that you have
are the coordinates that you chose to measure before beginning the study, you obviously
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cannot just reload a file of images and either add or move landmarks. Instead, you need to
redigitize each specimen. Consequently, you will need to know what to measure before
you start. If you have ready access to specimens that span the variation that you hope
to study, you can do a three-dimensonal pilot study, experimenting with landmark (and
semilandmark) selection.
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C H A P T E R

3

Simple Size and Shape Variables:
Shape Coordinates

This chapter presents methods for obtaining shape variables. One is particularly
simple and easily understood, and we present it first because the method is so accessible.
This method is sometimes called the “two-point registration” and it produces coordinates
that are termed “Bookstein shape coordinates”, which can be used both for graphical
displays and formal statistical tests. The second method, the Procrustes superimposition
is perhaps less intuitive, but the method is the one most widely used, for reasons that will
become apparent in the next chapter. It is the one that we will use throughout the rest of
this book so we introduce it now rather than laying its theoretical foundations in the next
chapter and deriving the superimposition method from theory. We focus on the simplest
possible application of the methods, the analysis of shapes with only three two-dimen-
sional landmarks (triangles). We also discuss how information about size can be restored
(because it is removed in the course of obtaining shape coordinates). We then extend the
analysis to three-dimensional landmarks and, in the case of the Procrustes superimposi-
tion, to semilandmarks, points along outlines or curves. As well as presenting the methods
for obtaining the coordinates, we also discuss the graphical description of results because,
to a large extent, it is the descriptive power of geometric morphometrics � the visualization
of shape change � that makes these methods so useful. The graphical results can differ
depending on the methods for obtaining the shape variables, so we show how apparent
inconsistencies can be reconciled.

SHAPE COORDINATES

In Chapter 1, we discussed the meanings of shape and size as they are defined in
geometric morphometrics. We defined shape in terms of operations that do not alter
shape � specifically, translation, rotation and rescaling. These operations can be applied to
a simple form, a triangle, allowing us to obtain a coordinate system. Because there is more
than one way to apply these operations, we can obtain different sets of coordinates from
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the same data. One way to apply these operations is shown in Figure 3.1: we can trans-
late the triangle so that one landmark is at the origin (0, 0) (Figure 3.1A). We can then
rotate the triangle so that the side AB is along the X-axis (Figure 3.1B) and, finally, we
can scale it so that the coordinate of landmark B is at point (1, 0) (Figure 3.1C). We can
then calculate the coordinate of the third landmark, C, in the coordinate system that we
have just defined. All of these operations can be applied without worrying about the
consequences for shape, because we have defined shape such that none of the operations
alter it. Notice that we have used a particular set of operations, translations of the X- and
Y-coordinates of point A to (0,0), a rotation about A to place point B on the X-axis,
and then a scaling to make the distance from A to B equal to one. The different superim-
positions use different choices of how to carry out these basic operations. These three
are the only operations involved in calculating the coordinates of point C, which is
done according to the following formula, in which Ax, Ay, Bx, By, Cx, and Cy are the original
digitized coordinates, and SCx, and SCy are the coordinates of landmark C in the new
coordinate system:

SCx 5
ðBx 2AxÞðCx 2AxÞ1 ðBy 2AyÞðCy 2AyÞ

ðBx2AxÞ2 1 ðBy2AyÞ2

SCy 5
ðBx 2AxÞðCy 2AyÞ2 ðBy 2AyÞðCx 2AxÞ

ðBx2AxÞ2 1 ðBy2AyÞ2
(3.1)

(The numerators for the two equations really do differ in sign, as well as subscripts;
that is not a misprint.)

FIGURE 3.1 Three operations that do not alter shape, applied to a triangle. (A) Translation; (B) rotation;
(C) rescaling.
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SCx and SCy are the “shape coordinates” of landmark C (which from now on we will
simply call Cxy). This relatively simple set of operations will be important when we com-
pare the shapes of two triangles.

Comparing Shapes of Two Triangles

To compare the shape of two triangles, we apply the operations outlined above to
both of them and calculate the shape coordinates of landmark C. That is, we assign the
coordinates (0, 0) to landmark A in both triangles, and we assign the coordinates (1, 0)
to landmark B in both triangles (Figure 3.2B). As a result, the difference between the two
triangles is entirely represented by the difference in the location of the third vertex, land-
mark C. We can now draw both triangles on the same coordinate system (Figure 3.2C).

While there are programs to do these calculations, they are easily done in any spread-
sheet or statistical program that manipulates formulae. As an exercise, take the following
three pairs of coordinates for points of a triangle (in the format produced by a common
digitizing program), compute the shape coordinates, and draw the triangle. For the

FIGURE 3.2 Two triangles whose shape difference
is the subject of investigation. (A) The two triangles as
initially recorded; (B) the same two triangles after being
translated, rotated and rescaled by the two-point regis-
tration; (C) the same two triangles, superimposed.
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moment, pick any two points as the endpoints of the baseline (A and B); we will discuss
how to choose them later.

1.) 54 306

2.) 223 447

3.) 632 300

Now take the next three coordinate pairs, and draw that triangle:

1.) 11 342

2.) 251 520

3.) 769 318

Now draw both triangles using the same baseline (with point A and B superimposed),
and draw the vector extending between the one free landmark (Cxy) on both triangles.
That vector is the shape variable describing the difference between the triangles.

Comparing Many Individual Triangles

Of course, we rarely (if ever) compare only two specimens (or triangles). We now con-
sider how to compare many individual triangles (below we discuss comparing forms
more complex than triangles). The same procedure (and formulae) applies no matter how
many triangles or individuals are examined. For example, given a collection of triangles
(Figure 3.3A), we assign points A and B the coordinates (0, 0) and (1, 0) and compare all
these triangles as whole triangles (Figure 3.3B), or as scatter-plots of the one free point
(Figure 3.3C).

The scatter-plot is useful for checking the repeatability of your landmarks, as well as
for studying the variability of shape or differences in shape. For all these purposes, it is
important that the axes of the scatter-plot be sized so that a square shape is shown as a
square � that is, the length of the interval from 0 to 1 on the X-axis should be the same as
the length of the interval from 0 to 1 on the Y-axis. Many programs do not do this scaling
of axes automatically, so you may have to scale the axes yourself. Often this can be done
by first calculating the maximum and minimum values for the X- and Y-coordinates;
the difference between those values, i.e. the range of values, should be set equal for both
coordinates. For example, if the X-coordinate ranges from 0.030 to 0.060 and the Y-coordinate
ranges from 0.020 to 0.060, both axes should be 0.040 units long (the Y-coordinate has the
slightly larger range). In this case, the minimum on the X-axis could be set to 0.025 and the
maximum on the X-axis to 0.065. This distributes the extra length equally above and below
the observed values, and should enforce a 1:1 aspect ratio for the graph.

When the axes are on the same scale, an approximately circular scatter of points
indicates that there is a reasonably equal amount of variation in all directions. Random
digitizing error should be circular; systematic errors, in contrast, will look elliptical.
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If you have already digitized landmarks, now would be a good time to compute shape
coordinates, scale the axes appropriately, and check that your digitizing error is circular.
Should you find points that depart substantially from circularity, you should either
delete that landmark from your analysis, or take its biased error into account in subse-
quent analyses.

When the scatter is circular, it is said to be isotropic, or uniform with respect to direc-
tion. If it is uniform at all landmark locations, the scatter (or variance) at the landmark
is said to be homogeneous. Don’t worry too much at this point if the scatter in your
data isn’t homogeneous, as we will discuss later, the baseline registration procedure can
produce inhomogeneity.

Multiple Triangles on Each Individual

So far we have concentrated on the simplest possible case: comparisons of a triangle.
This is because multiple landmarks can all be transformed into shape coordinates using
the formulae introduced for computing the shape coordinates of a single moveable point, C.
We just apply that same formula to all the additional points. It is not necessary to
use the same baseline for all points, but it does ease the task of reporting the changes.
Not only is the same formula applicable to the more complex case, but the same basic

FIGURE 3.3 Comparing
shapes of triangles. (A) The col-
lection of triangles whose shape
differences are the subject of
investigation; (B) the same collec-
tion of triangles, put in a common
coordinate system by the two-
point registration; (C) scatter-plot
depicting the location of the free
landmark.
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statistical machinery also applies. Another procedure also extends without difficulty
from one to many triangles � the depiction of shape differences by vectors at the free
landmarks. In the case of a single triangle, we can depict a change in shape by a single
vector depicting the displacement of one landmark relative to the baseline (Figure 3.4).
In the case of multiple triangles, we can similarly depict the change in shape by vectors
that show the displacements of points relative to the baseline (Figure 3.5). If this base-
line dependence is not seen as a serious problem, the description can proceed in terms
of the displacements of landmarks relative to each other, relative to the baseline. In
describing the ontogenetic change in shape depicted in Figure 3.5, we would need to
take the relative lengths of all the vectors into account. The most anterior free point on
the dorsal margin (landmark 2, at the epiphyseal bar) is displaced anteriorly, indicating
that the region between it and the baseline point at the tip of the snout is shortened
relative to the length of the baseline. The point immediately posterior to landmark 2
(landmark 3, at the tip of the supra-occipital process) is also displaced anteriorly,
although most of its displacement is along the dorsoventral body axis. Because the
anteroposterior component of this vector is short relative to that of the more anterior
point, the region between the epiphyseal bar and supra-occipital process is relatively
elongated (relative both to the length of baseline and to the more anterior region just
described). Such descriptions can be useful, even if they depend on the baseline.

FIGURE 3.4 (A) Triangle with the baseline along the anteroposterior body axis and the free point at the
anterior dorsal fin base; (B) the difference between two shapes depicted by a vector extending between C and C0.

FIGURE 3.5 Ontogenetic changes in the shape of a piranha, Serrasalmus gouldingi, represented by vectors
depicting the change in location of Bookstein shape coordinates from their position in a young juvenile.
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There is one special case of multiple triangles that is worth singling out: multiple
triangles describing two sides of a bilaterally symmetric organism. If we are interested
specifically in asymmetry, both sides contain relevant information because we are then
interested in the difference between sides. Otherwise, the two sides are redundant and
using both sides in the analysis implicitly treats them as if they were independent and
inflates our degrees of freedom. We can avoid this problem using the coordinates we
have obtained, reflecting one side across the midline and averaging the coordinates of
the two sides. This approach also allows us to use partially fragmentary specimens with
landmarks present on only one side or the other because, for these specimens, the “average”
for a landmark is obtained from the one side on which it was preserved.

Choosing the Baseline

When we calculated shape coordinates, we chose one side of the triangle to serve as a
baseline. An obvious question is whether our results might depend on that choice. One
important consideration is that variation will be transferred from the baseline landmarks
to the others. There are few, if any, truly invariant landmarks and when two are fixed,
their variance must be put somewhere. Some landmarks are difficult to digitize and these
should not serve as an endpoint of the baseline because their noise will be transferred to
all the other landmarks. What makes the transfer of variance really worrisome is that it is
not necessarily unbiased, rather it is related to the distances of the free landmarks to the
baseline (Dryden and Mardia, 1998). A baseline that runs through the centroid of the form
is preferable to one that is far from most other landmarks, as it minimizes this effect.
Additionally, when choosing the endpoints of the baseline, we do not want points that are
too close to each other because any highly localized variation in shape may be common to
both those points and the variance local to those baseline landmarks will be transferred to
all the other landmarks. As Bookstein (1991) has argued, the scatters for different sets of
shape coordinates of the same triangle to different baselines differ mainly by translation,
rotation and rescaling but the inhomogeneity of variance and the correlations among land-
marks induced by fixing two points could be problematic for statistical analysis. Another
consideration, but one that is primarily a matter of interpretability, is the orientation of the
baseline. If the baseline rotates relative to a body axis it does not compromise the statistical
analyses, but it can make interpretations based on graphics difficult � it might seem that
all the landmarks are moving away from the baseline in the posterodorsal direction,
for example, when the baseline rotates in the anteroventral direction. Ideally, therefore,
we want endpoints of the baseline to be along the longest diameter of the form that passes
through the centroid of the form, so long as those points are not especially unreliable and
the longest diameter does not rotate.

To see the consequences of fixing various endpoints, we can consider the ontogenetic
series of the piranha Serrasalmus gouldingi. We have used landmarks 1 and 7 as the
endpoints of the baseline; both the scatter of coordinates and the depiction of ontogenetic
change resulting from that choice can be seen in Figure 3.6A,B. We could have used two
dorsal landmarks (3 and 5), producing a strikingly different scatter-plot that implies
considerably more variation (Figure 3.6C), as well as a strikingly different picture of
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ontogenetic change (Figure 3.6D). The dorsoventral component of shape change has been
removed from all three dorsal landmarks and is expressed as a displacement of every
other landmark away from the dorsal edge. In addition, the elongation of the middle of
the body relative to the rest of the piranha is now expressed as a relative contraction
of the ends towards the middle. If we had used another baseline (landmarks 1 and 3) that
rotates relative to most of the other landmarks, the variation seems to be even further
increased (Figure 3.6E) and the piranha’s body seemingly rotates as it grows (Figure 3.6F).
Clearly, the baselines used in Figures 3.6C,D and 3.6E,F are spectacularly bad choices.
But they simply exaggerate the general problem that the variance of baseline points is
transferred to the other landmarks. It should be intuitively obvious, even if not visibly so,

FIGURE 3.6 The impact of the baseline on variation and the depiction of ontogenetic shape change of
a piranha, S. gouldingi. (A) Coordinates of landmarks relative to a fixed baseline that extends between land-
marks 1 and 7; (B) vectors indicating displacements of landmarks relative to the fixed baseline; (C) coordinates
relative to a fixed baseline that extends between two dorsal landmarks (3 and 5); (D) vectors indicating displa-
cements of landmarks relative to the fixed baseline; (E) coordinates of landmarks relative to the baseline that
extends between landmarks 1 and 3; (F) vectors indicating displacements of landmarks relative to the fixed
baseline.
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that the actual anatomical landmarks are really no more variable than in Figure 3.6A and
B � changing the baseline does nothing but rotate and rescale the data. Although the con-
sequences for our perception of the shape differences can be dramatic, particularly when
it makes the data seem inordinately noisy, those consequences can be understood as
the result of a change in perspective. In general, it is easiest to interpret results when the
baseline lies along an organismal body axis. Even though results can be interpreted in a
baseline-invariant way, the interpretations still refer to sides of the triangle. It is most con-
venient when at least one side is a conventional and familiar reference. Thus, even though
we can interpret shape changes without reference to organismal body axes, we might still
wish to orient our findings with respect to them. This motivates choosing a baseline along
one of those axes.

SIZE

To this point we have talked only about shape. In the course of obtaining shape coordi-
nates, we lost no information about shape, but we removed all the information about size.
Specifically, we removed it by rescaling the baseline to a length of one. We can restore the
information about size by using a measure that captures the notion of scale � the property
that changes when an image is enlarged or reduced. There are several other meanings
of size, including a simple measure of the length of an organism (e.g. snout�vent length),
or area, volume, weight or even a linear combination of all measured quantities that
captures the positive correlations among them (as such as the first principal component).
In geometric morphometrics, we use a specific concept of size, one related to geometric
scale. One reason for choosing such a measure is that it is geometrically independent
of shape, at least under some models of error (Bookstein, 1991). To clarify this idea of
geometric independence, consider what happens when every dimension is enlarged by
the same proportion so that the organism gets larger without altering its shape. In this
case, each coordinate is moved away from the center in proportion to its original distance
from the center. The size variable that captures this radial notion of scale is centroid size,
graphically illustrated in Figure 3.7.

FIGURE 3.7 A geometric depiction of the calcula-
tion of centroid size: the square root of the summed
squared lengths of distances of landmarks from the
centroid: L1, L2, L3.
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Centroid size is the square root of the summed squared distances of each landmark
from the centroid, giving a linearized measure of size (in a few very early publications, the
measure was not linearized). To compute centroid size, first compute the centroid (center)
of the form, whose location is the mean position of all coordinates. The mean is found by
simply averaging all the X-coordinates and all the Y-coordinates. For example, the three
landmarks of the triangle might be at (0, 0), (1, 0) and (0.3, 0.8) so the average X-coordinate
is the arithmetic mean of the three X-coordinates (0, 1, and 0.3), which is 0.433, and the
average Y-coordinate is the arithmetic mean of the three Y-coordinates (0, 0, 0.8), which is
0.267. Then calculate the squared distance of each landmark from the center, using the
standard formula for a squared distance between two points (X22X1)

21 (Y22Y1)
2. This

sum gives a measure of size related to area; taking the square root gives the linearized
measure of size.

Size is thus measured separately from shape, and is geometrically independent of
shape. It is also statistically independent of shape (i.e. uncorrelated with shape, when the
landmarks vary independently and equally in all directions). This is a useful attribute of a
size measure because we do not want size to be intrinsically correlated with shape simply
by virtue of its formula. Rather, we want a measure of size that is correlated with shape
only when size and shape covary, that is, in the presence of allometry. Allometry is a com-
mon phenomenon, so we might expect that size and shape would usually be statistically
correlated. But that correlation is an empirical finding, not an outcome of the formula for
size. Centroid size, and other measures that are variants on centroid size, is the only size
variable that is statistically uncorrelated with shape in the absence of allometry. This is one
of the main reasons why centroid size is used as a size variable. The other reason is that
centroid size plays a crucial role in defining the metric for a distance between two shapes
(see Chapter 4).

Bookstein Shape Coordinates in Three Dimensions

Shape coordinates for three-dimensional data can be calculated by an extension of the
formula for two-dimensional shape coordinates, but the formula is more complex because
three-dimensional objects can rotate around the three orthogonal axes, X, Y and Z
(Figure 3.8). The baseline is again translated, scaled to unit length oriented along the
X-axis and rotated so that the third landmark (C) is in the X, Y plane. Computing the

FIGURE 3.8 Rotation in 3D: axes of rotation.
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coordinates of the free coordinates involves (clockwise) rotations around the X, Y and Z
axes (through angles φ, ω, and θ, respectively). The three rotation matrices are:

Rx 5

1 0 0

0 cosφ sinφ

0 2sinφ cosφ

2
664

3
775

Ry 5

cosω 0 sinω

0 1 0

2sinω 0 cosω

2
664

3
775

Rz 5

cos θ sin θ 0

2sin θ cos θ 0

0 0 1

2
664

3
775

(3.2)

So, designating the translated and scaled coordinates by Ats, Bts, Cts, the three-dimensional
shape coordinates are RxRyRz(Ats, Bts, Cts)

T (for a more detailed presentation of the calculation
of three-dimensional Bookstein shape coordinates see Dryden and Mardia, 1998; Claude, 2008).

STATISTICS OF SHAPE COORDINATES

Now that we have shape coordinates, we can answer the basic “existential” questions
as defined in Chapter 1, such as “do these samples differ in shape?” All conventional
statistical methods and tests can be applied to shape coordinates and centroid size. For
example, an average value for the shape coordinate at point C is computed by averaging
the X-coordinates for that point across all individuals within a sample, then dividing that
sum by the total number of individuals in that sample and applying that same procedure
to the Y-coordinates. Variances and standard deviations are also calculated by standard
formulae. Because the two endpoints of the baseline are fixed, they have no variance and
should not be included in statistical analyses. If you use conventional statistical packages
to analyze these coordinates, remember to exclude them from the analysis because many
programs will not run if the variables do not vary.

Because every landmark has two dimensions (its X-, and Y-coordinates), statistical anal-
yses are necessarily multivariate. Even if we are asking whether two samples of triangles
differ in average shape, we must use a multivariate test. In particular, we would use the
multivariate form of the familiar Student’s t-test, Hotelling’s T2 test (see, for example,
Morrison, 1990). When comparing two samples of triangles, the test is applied to the two
coordinates of landmark C. When we are comparing more than two samples, we can use
Wilks’ Λ (Rao, 1973) or one of the related statistics obtained by a multivariate analysis of
variance (MANOVA). In studies of allometry, we use multivariate regression. However,
an important consideration that needs to be taken into account when applying statistical
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tests to these shape coordinates is that the variances of landmark locations are not inde-
pendent of the mean location of that landmark relative to the baseline. Variance thus will
not be homogeneous at all landmarks. That is because the variance of the baseline end-
points is transferred to the other coordinates. Additionally, the use of the baseline induces
correlations between landmarks so methods like principal components analysis should not
be applied to Bookstein shape coordinates (Bookstein, 1996; Dryden and Mardia, 1998).

PROCRUSTES SUPERIMPOSITION

In Greek mythology, Procrustes was a bandit who fit his visitors (victims) to a bed by
stretching or truncating them, minimizing the difference between his visitors and the bed.
The method that we will now use to obtain shape coordinates is Procrustean in the sense
that it minimizes the differences between landmark configurations. Unlike the mythologi-
cal Procrustes, who altered the shape of his victims, the mathematical Procrustes superim-
position method does not alter shape because it uses the three operations that do not
alter shape: translation, scaling and rotation. Presumably Procrustes’ guests would have
preferred that he had done likewise!

A step-wise description of the method was presented by Rohlf and Slice (1990):

1. Center each configuration of landmarks at the origin by subtracting the coordinates of
its centroid from the corresponding (X or Y) coordinates of each landmark. This
translates each centroid to the origin (and the coordinates of the landmarks now reflect
their deviation from the centroid).

2. Scale the landmark configurations to unit centroid size by dividing each coordinate of
each landmark by the centroid size of that configuration.

3. Choose one configuration to be the reference, then rotate the second configuration to
minimize the summed squared distances between homologous landmarks (over all
landmarks) between the forms.

When there are more than two forms, all are rotated to optimal alignment on the first; the
average shape is then calculated and all are rotated to optimal alignment on the average
shape, which is the new reference. At this point, the average shape is recalculated. If it differs
from the previous reference, the rotations are recalculated using this newest reference. When
the newest reference is the same as the previous, the iterations stop (usually only a few itera-
tions are necessary). The final reference is the one that minimizes the average distances of
shapes from the reference. Note that this result does not depend on the shape of the first spec-
imen used in the alignment; instead, it depends on the distribution of shapes in the sample.

While the terminology and different variations on Procrustes superimposition will be
discussed in greater detail later, it is worth mentioning that the procedure just discussed is
called partial Procrustes Superimposition, which simply indicates that the centroid size
was fixed at one. This is currently the standard Procrustes technique, and a lot of workers
will use the term Procrustes to refer to what is really a partial Procrustes superimposition.
The key is to look for a centroid size of one in the description of the methods used. When
an iterative method is used to estimate the mean form, as discussed above, the entire
process is called a Generalized Procrustes Analysis (GPA).
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We can apply these operations to two triangles shown in Figure 3.9A. One has coordinates
(21, 21), (1, 21) and (0, 1) and the other has coordinates (1.07, 21.64), (3.10, 20.72) and
(1.55, 0.82). The first step is to center them by subtracting the coordinates of the centroid,
and again we calculate the coordinates of the centroid by computing the arithmetic averages of
the X- and Y-coordinates. For the first triangle, the X-coordinate of the centroid is

FIGURE 3.9 Procrustes superimposition. (A) Two triangles; (B) two centered triangles; (C) centered and scaled
triangles; (D) finding the angle of rotation; (E) centered, scaled and rotated triangles.
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(1/3)(211 11 0)5 0, and the Y-coordinate of the centroid is (1/3)(211211 1)520.333.
For the other triangle, the X-coordinate of the centroid is (1/3)(1.071 3.101 1.55)5 1.907 and
the Y-coordinate of the centroid is (1/3)(21.64120.721 0.82)520.513. We now subtract these
centroid coordinates from the coordinates of the landmarks. For the first triangle, this gives us:

5

ð212 0Þ ð212 ð20:333ÞÞ
ð12 0Þ ð212 ð20:333ÞÞ
ð02 0Þ ð12 ð20:333ÞÞ

2
64

3
755

21 20:667

1 20:667

0 1:333

2
64

3
75 (3.3)

And for the other this gives us:

ð1:072 1:907Þ ð21:642 ð20:513ÞÞ
ð3:102 1:907Þ ð20:722 ð20:513ÞÞ
ð1:552 1:907Þ ð0:822 ð20:513ÞÞ

2
64

3
755

20:837 21:127

1:193 20:207

20:357 1:333

2
64

3
75 (3.4)

So the two triangles are now both centered on the same coordinates (see Figure 3.9B).
We now need to scale them by dividing each coordinate by centroid size. The calculation

of centroid size is simple now that the centroids are at 0,0 � it is the square root of the sum
of the squared coordinates. For the first triangle, centroid size is calculated as:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð21:0Þ2 1 ð20:667Þ2 1 ð1:0Þ2 1 ð20:667Þ2 1 ð0Þ2 1 ð1:333Þ2

q

5 2:160
(3.5)

And for the second triangle it is calculated as:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð20:837Þ2 1 ð1:127Þ2 1 ð1:193Þ2 1 ð20:207Þ2 1 ð0:357Þ2 1 ð1:333Þ2

q

5 2:311
(3.6)

So we now divide each coordinate by centroid size. For the first triangle, dividing each
coordinate by 2.16 gives us:

1

2:160

21 20:667

1 20:667

0 1:333

2
64

3
755

20:463 20:309

0:463 20:309

0:000 0:617

2
64

3
75 (3.7)

And for the second triangle, dividing each coordinate by 2.311 gives us:

5
1

2:311

20:837 21:127

1:193 20:207

20:357 1:333

2
64

3
755

20:362 20:488

0:516 20:089

20:154 0:577

2
64

3
75 (3.8)

So now we have centered and scaled the triangles (see Figure 3.9C).
The next step is to rotate the triangles to minimize the sum of the squared differences

of the coordinates (summed over all three coordinates). To do this, we will pick one of
the triangles to serve as the reference; we will arbitrarily pick the first one. So we now
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rotate the second, around its centroid, through angle θ to minimize that sum of squared
differences (see Figure 3.9D). After the rotation, the X- and Y-coordinates of each landmark
will have the coordinates (X cos θ2Y sin θ), (X sin θ1Y cos θ). Thus, the rotated form the
second triangle will be:

ð20:362 cosθÞ2 ð20:488 sinθÞ ð20:362 sinθÞ1 ð20:488 cosθÞ
ð0:516 cosθÞ2 ð20:089 sinθÞ ð0:516 sinθÞ1 ð20:089 cosθÞ
ð20:154 cosθÞ2 ð0:577 sinθÞ ð20:154 sinθÞ1 ð0:577 cosθÞ

2
64

3
75 (3.9)

The value of θ that gives us the minimum sum of squared deviations is 219.2� so,
inserting that into Equation 3.9, gives us the coordinates for the second triangle:

20:502 20:341

0:458 20:254

0:044 0:596

2
64

3
75 (3.10)

We now have the superimposed triangles (see Figure 3.9E).

PROCRUSTES SUPERIMPOSITION IN THREE-DIMENSIONS

Differences in location, scale and orientation of three-dimensional configurations are
removed by exactly the same operations; the only substantive difference is that we work with
larger matrices, making the computations more tedious (especially for the programmer).
We will not go through them all again because the only difference is the number of columns
to be averaged to compute the centroid, the number of columns from which the centroid coor-
dinates are subtracted, and the number of coordinates that are divided by centroid size.
The one step that is complicated by three-dimensional data is rotation, just as this was the one
complication encountered when we extended the formula for two-dimensional Bookstein
shape coordinates to three-dimensions. We now have to solve for the particular combination
of angles that minimizes that distance. Still, the solution remains conceptually simple and
it is obtained by a singular value decomposition (SVD) of the matrix Xt

RXT in which XR and
XT are the centered and scaled configuration matrices of the reference and target, respectively
(Rohlf, 1990). As Rohlf points out, this is just one example of the general utility of SVD for
finding the angular relationship between two matrices.

SEMILANDMARK SLIDING

As discussed earlier, there may be studies in which we want to incorporate information
about outlines or curves as well as landmarks into the analysis. This is done using
semilandmark techniques, in which points are placed along the curve or outline. A curve
is simply an infinite set of points so, in using semilandmarks, we are approximating this
infinite set with a finite number of points placed along the curve using some algorithmic
approach to optimize this approximation.
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One method for superimposing semilandmarks, suggested by Sampson and colleagues
(1996), slides semilandmarks to the position that minimizes the summed squared deviations
between each individual and the reference form. The semilandmarks are not free to move in
any direction; each is confined to slide along the line tangent to the curve at that semiland-
mark (Figure 3.10). The shape of the curve is not actually known, so the tangent is estimated
as the line parallel to the segment connecting a series of adjacent landmarks
or semilandmarks. Each semilandmark of the target slides along its tangent to align with
the perpendicular at the corresponding semilandmark of the reference. Using this method,

FIGURE 3.10 Semilandmark superimposition. (A)
Landmarks (black) and semilandmarks (white) on a squirrel
scapula; (B) finding tangents to the curve and sliding
semilandmarks.

FIGURE 3.11 Semilandmark superimposition
result. (A) Landmarks (black) and semilandmarks (hol-
low) on a squirrel scapula; (B) slid semilandmarks.
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the only information extracted from the semilandmarks is about the bowing of the curve
(displacement perpendicular to the tangent) because any variation along the curve is treated
as non-shape (nuisance) information resulting from the arbitrary choices made when digitiz-
ing the semilandmarks. The outcome is shown in Figure 3.11 � all the semilandmarks line
up on their respective perpendiculars.

RESISTANT-FIT SUPERIMPOSITION

Resistant-fit superimposition methods (RFTRA) are similar to GPA but there is no
goodness-of-fit criterion to be minimized. In recognition of the general similarity, the
resistant-fit methods have also been characterized as “Procrustes methods” (see Chapman,
1990). The rationale for such methods is that GPA, like any method that uses least squares,
is very sensitive to large displacements at few landmarks. In statistical procedures like
regression, a few cases with unusually large deviations from the general pattern (i.e. “outliers”
or “influential observations”) can have a large effect on the results of a procedure that
minimizes the sum of the squared deviations. In shape analysis, a large change limited to one
or a few influential landmarks is sometimes called the Pinocchio effect, although those
influential landmarks need not be at the tip of a long process. When GPA is used to super-
impose landmark configurations, the Pinocchio effect can have a large effect because the
least squares criterion distributes the displacements of the few landmarks across all the
other landmarks. In graphical displays, the Pinocchio effect appears to be “smeared out”
over all landmarks, which can be unsettling for some workers. Figure 3.12 shows a
hypothetical example in which the only shape change in a tree squirrel scapula is the ventral
displacement of the three most ventral landmarks. The more severe consequence is that

FIGURE 3.12 Hypothetical example of
the Pinocchio effect as exemplified by ven-
tral displacements of the three most ventral
landmarks of a tree squirrel scapula.
(A) Configurations superimposed by a resis-
tant-fit method (RFTRA); (B) configurations
superimposed by GLS. The outline of the
scapula is approximated by lines connecting
the landmarks.
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the least squares criterion causes the variances of the influential landmarks to be allocated
to other points, inducing covariances (Walker, 2000).

Resistant-fit methods reduce the influence of the Pinocchio effect by taking a “robust”
approach to superimposition. In statistics, “robust” means that the method is relatively
insensitive to outliers in the data. Similarly, a robust superimposition method is relatively
insensitive to a few landmarks with large relative displacements. A wide variety of error
functions has been used as criteria for robust fitting procedures, the interested reader is
referred to Press et al. (1988) for a discussion of several alternatives. None of them allow
analytic solutions for the rotation and scaling parameters needed to carry out a superim-
position; instead they use numerical methods (simplex searches) to find the rotation and
scaling necessary to minimize the error function.

The robust approach implemented by RFTRA uses the method of “repeated medians”
to determine the scaling and rotation necessary to superimpose one shape on another
(Chapman, 1990). We describe the steps used to find the scaling factor in some depth; then
more briefly describe the steps to find the rotation. For the scaling factor:

1. Compute the pairwise interlandmark distances in both shapes and then compute the
ratio of each pair of corresponding distances.

2. For each landmark, find the median of ratios for all segments radiating from that
landmark. This will yield one ratio for each landmark.

3. Find the median of the medians generated by step 2. This median of medians is the
scaling factor used in the superimposition � in other words, all coordinates of the
second shape are scaled by this factor.

After scaling the second form, the rotation angle used by RFTRA can be determined in
a similar fashion from the same set of line segments. The first step is to compute the
angles between the corresponding segments; the remaining steps find the median angle
associated with each landmark and then the median of the medians. Rohlf and Slice (1990)
present a generalized resistant-fit method that centers and scales coordinates to a common
size (computed as the median squared interlandmark distances) yielding a matrix X 0

j : The
initial step uses least squares to fit X 0

j to the coordinates of the first specimen Y, which
is the initial reference. A new reference Y is then calculated as the median of the rotated
specimens, and X 0

j is then rotated to fit that Y. This procedure is iterated until the change
in Y is smaller than the chosen stopping criterion. The lack of change in the reference, Y,
determines when the iterations cease because there is no explicit fitting criterion being
minimized.

Resistant fit methods are robust because medians are relatively insensitive to outliers.
Consequently, large changes at one or a few landmarks will not appreciably alter the
median scaling factor or the median rotation angle. This makes the resistant-fit methods
resistant to the Pinocchio effect, which helps to highlight the region where the effect
occurs, as in Figure 3.12. However, in the absence of the Pinocchio effect, superimpositions
produced by resistant-fit methods usually do not differ greatly from those produced by
GPA. Figure 3.13 shows both GPA and resistant-fit superimpositions of the real scapulae
that were the basis of the hypothetical example. The real scapulae differ in the relative
length of the ventral process, as in the hypothetical case, but they also differ in the shape
of the anterior edge of the scapula (producing large relative displacements of the two
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circled landmarks). The difference between the superimpositions is subtle; it is most
noticeable at the ventral end, where RFTRA attributes somewhat greater anterior displace-
ments to the more ventral landmarks. The principal advantage of RFTRA and other resistant-
fit methods lies in their ability to address the Pinocchio effect. The principal disadvantage of
these methods will become clearer in the next chapter.

Interpreting the Graphical Results

The graphical representation of results is one of the main reasons why geometric methods
are so useful and popular. Different superimposition methods can yield strikingly different
visual displays from the same data, which can be both disconcerting and useful. It is useful
because seeing different depictions of the same results can help you avoid drawing conclu-
sions that depend on a particular visual display. For example, one method might show large
displacements at some landmarks whereas another superimposition method might show large
displacements at other landmarks. Seeing two or more pictures helps to avoid a common error,
that of interpreting the changes as if they are at the landmarks. To illustrate the variety of
pictures that can be obtained by different superimposition methods, we use three (BC, GPA
and RFTRA) to depict the ontogeny of body shape in the piranha S. gouldingi (Figure 3.14).

Perhaps the most obvious difference among the three panels is the degree to which
post-cranial landmarks are vertically displaced. It might appear that Bookstein shape coor-
dinates either exaggerate the degree to which the post-cranial body is deepened, or else
that the other superimpositions understate it. However, this is not the case; all the other
superimpositions show a relative shortening of the body, which is equivalent to a relative
deepening. Both mean exactly the same thing. Relative body depth is a ratio between
depth and length, so it is just as reasonable to think of it as a decrease in length relative to
depth as to think of it as an increase in depth relative to length. Increasing body depth
increases the ratio by increasing the numerator; decreasing body length also increases the

FIGURE 3.13 Comparison of (A) GPA
and (B) RFTRA superimpositions for data
that lack a Pinocchio effect: real differences
in scapula shape between two squirrels.
The circles denote the two landmarks that
undergo large relative displacements, in
addition to the three most ventral landmarks.
The outline of the scapula is approximated
by lines connecting the landmarks.
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ratio, but by decreasing the denominator. Because we come to the pictures informed by
our knowledge that body length increases over ontogeny, it may be difficult to grasp that
it decreases relative to depth. We would probably avoid saying that body length decreases
relative to depth, simply because that phrasing is disconcerting to biological intuition;
instead, we would say that depth increases relative to length. When pictures show a
relative decrease in a feature that is increasing in absolute length, readers may need some
explanation of the unexpected contrast. In particular, it is important to explain that the
decrease is in relative (not absolute) length.

Other apparent inconsistencies between pictures can also be reconciled, usually by
concentrating on the changes in relative positions of landmarks rather than on the vectors at
individual landmarks. It may take a lot of practice before this is easy. For example, look
at the circled landmark in Figure 3.15. If you look only at this landmark, the results
from the different superimpositions appear to be inconsistent. That landmark appears to
“move” quite far anterodorsally in the BC superimposition (Figure 3.15A), but much less
and in two different directions in the other superimpositions: anteroventrally in GPA
(Figure 3.15B), and almost entirely ventrally in RFTRA (Figure 3.15C). However, none of
these statements actually reflect what the pictures show. None of the pictures shows the
independent movement of any one point in isolation; rather, what they show is the relative
displacements of all points.

We get a better indication of the displacement of the circled landmark relative to neigh-
boring landmarks by “connecting the dots” � drawing line segments between landmark
locations to approximate the profile of S. gouldingi’s head. In Figure 3.16, we show the
same superimpositions and ontogenetic displacements of landmarks as in Figure 3.15, just

FIGURE 3.14 Ontogenetic change in body shape of S. gouldingi depicted by vectors of relative landmark dis-
placement computed from three superimpositions. (A) BC coordinates from the 1�7 baseline; (B) GPA; (C)
RFTRA.
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FIGURE 3.15 Ontogenetic change in body shape of S. gouldingi, highlighting the circled landmark at the
epiphyseal bar. Displacements are shown in three superimpositions: (A) BC coordinates from the 1�7 base-
line; (B) GPA; (C) RFTRA.

FIGURE 3.16 Ontogenetic changes in dorsal head profile are highlighted by drawing in line segments
between the locations of landmarks at two different ages: early in ontogeny (dotted line) and late in ontogeny
(solid line). Displacements are shown in three superimpositions: (A) BC coordinates from the 1�7 baseline; (B)
GPA; (C) RFTRA.
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adding lines to show the relative positions of the landmarks early in ontogeny (dotted
lines connecting the bases of the arrows) and late in ontogeny (solid lines connecting the
tips of the arrows). Now we can see that the profile of the head is initially fairly shallow
(nearly a straight line across all three points), and becomes much steeper (particularly
between the tip of the snout and the second landmark � the one that was circled). All
three superimpositions show this same change in profile. Despite apparent discrepancies
in the displacements of individual landmarks, the relationships among the landmarks are
consistently represented. Before we can interpret the results in terms of these vectors of
relative landmark displacement, we must become accustomed to what these vectors repre-
sent. The individual vectors do not show changes at landmarks; rather, the differences
between vectors show changes between the landmarks.

GPA can yield some visually unsettling results, such as rotated axes of symmetry.
For example, in analyses of rodent skulls (Zelditch et al., 2003), the coordinates of the bilat-
erally homologous landmarks on the right and left side were averaged to avoid inflating
degrees of freedom. When the results are shown by a GPA (Figure 3.17A), the midline of
the skull appears to rotate, but that cannot happen; the midline is the midline regardless
of variation in shape. Not only is this apparent rotation of the midline visually troubling,
it also complicates the interpretation of the results. One superimposition method that is
designed to overcome such a problem is the “Sliding Baseline Registration” (Figure 3.17B).
The sliding baseline registration (SBR), developed by David Sheets in collaboration
with Mark Webster (Webster et al., 2001) and Keonho Kim (Kim et al., 2002) reduces the

FIGURE 3.17 Superimposition of forms with an axis of symmetry � ontogenetic changes in a cotton rat skull.
Dotted lines connect landmarks on the mid-sagittal axis. (A) Landmark displacements inferred from GPA which
appears to indicate translation and rotation of the midsagittal axis; (B) landmark displacements inferred from SBR,
which does not appear to suggest translation and rotation of the mid-sagittal axis; (C) landmark displacements
inferred from GPA on symmetrized and back-reflected configurations, which also does not appear to suggest transla-
tion and rotation of the mid-sagittal axis.
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disadvantages of aligning landmark configurations along one edge, as in the two-point
registration. Configurations are scaled to unit centroid size and, because of that, baselines
will usually vary in length. Consequently, the two endpoints cannot be superimposed
simultaneously. Instead, their Y-coordinates are fixed at zero and their X-coordinates are
allowed to vary as necessary to align the X-coordinates of the centroids at zero, in effect
sliding the baseline along the X-axis (the Y-coordinate of the centroid is the average
perpendicular distance of the landmarks from the baseline after scaling to unit centroid
size). Because SBR prevents rotation of the baseline, it yields a more realistic representa-
tion of the data � in this case, of the ontogenetic change in skull shape. Actually, a very
similar picture can be obtained by a GPA on the unreflected data, or on the back-reflected
data obtained by duplicating the averaged and reflected data back across the midline
(Figure 3.17C). In general, reconstructing the whole skull makes a more interpretable picture
(one that looks more like the organism), so it might be useful to present results in these
terms even if the statistical analyses used the GPA coordinates computed for the reflected
and averaged half skull.

Of the various superimposition methods discussed in this chapter, the one that is
most widely used is GPA for reasons that will become clearer in the next chapter � this
method is grounded in the mathematical theory of shape. Configurations of landmarks are
manipulated using the three operations that do not alter shape as defined by Kendall.
These operations are used in a manner that removes all differences that are not shape
differences. The configurations produced by this procedure are those that map to points
in the shape spaces implied by Kendall’s definition of shape. The computed distances
between these configurations are the distances between points in those spaces, or certain
linear approximations of those spaces. The characteristics of these metrics are well known,
providing a secure and stable foundation for biological shape analysis, and the pictures
embody the results.
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C H A P T E R

4

Theory of Shape

This chapter covers the basic theory of shape, beginning with the definition of shape
and proceeding through the characterization of several theoretical spaces. Some of the
mathematics may look a bit difficult, but it is important to grasp the basic ideas, which
we present verbally as well as mathematically. These ideas will reappear in the next
chapter, because they form the core of geometric morphometrics. Interestingly, many of
the techniques used in geometric morphometrics were developed independently of this
theory even though they are justified by it. As the theory matured, it became possible
to synthesize a large body of techniques that had been developed independently of
each other and to explicate their interrelationships. Perhaps most importantly, this the-
ory also allows us to judge whether or not particular methods are valid. The theory
provides the underlying justifications for all our techniques, thereby allowing us to
make inferences about shape without worrying that those inferences are somehow based
on arbitrary or mathematically faulty choices that we happened to make in the course
of our analyses. Freed of such concerns, we can concentrate on the biological meaning
of the results.

It would be possible to learn techniques without understanding any of this theory �
but don’t. Without the theory it is impossible to say why some methods are right and
others are not. In effect, you would have to memorize a list of “dos” and “don’ts” by
rote without understanding why the “dos” are “dos” and the “don’ts” are “don’ts.”
Learned in that way, it might seem that there are lots of picky rules and dogma, but
these rules are not picky and they are not a matter of dogma. Rather, they all logically
(and mathematically) follow from the mathematical theory of shape. In fact, they follow
from the definition of shape. Because this definition is central to geometric morphomet-
ric theory, we begin there, developing it further than in previous chapters.
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THE DEFINITION OF SHAPE

David Kendall’s (1977) definition of shape is the basis of all that will follow in this
chapter, and indeed of any consideration of the meaning of shape:

Shape is all the geometrical information that remains when location, scale and rotational effects are fil-
tered out from an object.

This statement is both intuitively reasonable and mathematically useful. It suits our
intuitions because we can all agree that moving an object from one place to another does
not change its shape; that operation, called translation, obviously does not alter shape. For
example, Figure 4.1A shows the translation of a shape along an axis, and this motion has
no consequences for shape. Likewise, rotating the object does not change shape (Figure.
4.1B), and neither does enlarging or reducing an image (a manipulation called rescaling;
Figure 4.1C). Although it may be obvious that translation, rotation and rescaling do not
alter shape, it may not be obvious that this fact provides a mathematically useful defini-
tion of shape.

To a non-mathematician this definition may seem a bit odd, because it defines shape
by what does not alter it rather than in terms of what shape is or by the operations that
do alter it. However, the definition is useful because it means that any operation not on

(A)

(B)

(C)

FIGURE 4.1 The operations that do
not alter shape: (A) translation; (B) rota-
tion; (C) scaling.
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that list does affect shape. Also, the list of operations that do not alter shape is useful
because we know that we are free to use those operations when we compare shapes
mathematically.

The entire theory of geometric morphometrics follows from the definition of shape, so
we need to develop it further. First, we need a more precise definition of a landmark.
When we discussed the criteria for choosing them in Chapter 2, we emphasized that the
criterion of homology has mathematical as well as biological implications. The mathemati-
cal implication follows from the formal definition of a landmark (Dryden and Mardia,
1998):

A landmark is a point of correspondence on each object that matches between and within populations.

The concept of matching encoded in that passage is not necessarily one of biological
homology, but the idea of correspondence is essential to the mathematical theory of shape.
If the landmarks do not correspond, we cannot compare shapes.

Another crucial idea is that of a configuration of landmarks; the full set of landmarks
recorded for each specimen. All comparisons of shapes are between matching configura-
tions of landmarks, not between individual landmarks (analyzed separately). An individ-
ual landmark is not an object of comparison because it does not satisfy the definition of
shape. The objects of comparison are entire configurations comprised of K landmarks
(where K refers to the number of landmarks), each of which has M coordinates (i.e. M5 2
for planar shapes). For example, in the case of the piranhas introduced in the second chap-
ter, K5 16 and M5 2. Whatever the number of landmarks and coordinates, our analyses
and conclusions are based on the entire set. Thus, if we have 16 landmarks with two coor-
dinates apiece, we have one shape � not 32 variables. No one landmark (and no one coor-
dinate) is a shape variable in its own right. Instead, we view each shape as the entire
configuration and we analyze samples of entire configurations.

This is a very different view of measurement (and variables) from that commonly
encountered in traditional morphometrics, where a single measurement might be viewed
as a variable, meriting analysis in its own right. It is common to analyze measurements
separately and to draw biological conclusions from them individually. Sometimes, the con-
clusions based on one measurement conflict with conclusions based on another, and the
inference often drawn in such situations is that the processes are trait-specific. In geomet-
ric morphometrics, individual measurements are not traits or even variables. Rather, a
shape variable is the entire vector of coefficients representing the complete difference in
landmark configurations between samples or, alternatively, the entire vector of coefficients
measuring the covariance between the landmark configurations and some other variable
(e.g. size).

This view of shape as a configuration of landmarks is central to the theory of geometric
morphometrics. Recognizing that, and conforming to the requirements it imposes on ana-
lytic methods, is crucial. It may seem biologically unreasonable to treat an entire shape as
a single entity, but the pay-off for doing so is the guarantee that our results do not depend
on arbitrary choices we happened to make in the course of an analysis. The reward for fol-
lowing what might seem like a rigid set of rules is the rigor and power of these methods,
as well as the visual appeal of the graphics.
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MORPHOMETRIC SPACES

Given the definition of shape, we can now develop the mathematical idea of morpho-
metric spaces. We begin by defining some additional terms.

The Configuration Matrix

A configuration matrix represents an entire configuration of landmarks. It is a K3M
matrix of Cartesian coordinates that describes a particular set of K landmarks in M dimen-
sions (Dryden and Mardia, 1998). When we talk about a K3M matrix, we mean that the
matrix has K rows and M columns; each of the K rows represents a specific landmark on a
specimen, with M Cartesian coordinates. For example, the simplest shape we might want
to study is a triangle with landmarks located at the three vertices of the triangle. Calling
the coordinates of the first vertex X1 and Y1, and those of the second vertex X2 and Y2,
and those of the third vertex X3 and Y3, the configuration matrix of triangle X is:

X5
X1 Y1

X2 Y2

X3 Y3

2
4

3
5 (4.1)

It is often useful to represent this same landmark configuration as a row vector, in which
the landmark coordinates are listed along a single row in K3M columns:

X5 ½X1 Y1 X2 Y2 X3 Y3� (4.2)

This contains exactly the same information, represented slightly differently. Given a set
of landmark coordinates in row vector form, you can easily convert it to a configuration
matrix (the representation you might prefer at any given time depends on the particular
task or software at hand).

For example, the configuration matrix of the triangle shown in Figure 4.2 is:

X5
21 21
1 21
0 1

2
4

3
5 (4.3)

The row vector representing the same triangle would be:

X5 ½21 21 1 21 0 1� (4.4)

Configuration Space

The configuration space is a set of all possible K3M matrices describing all possible
sets of landmark configurations for that given K and M. For example, a 163 2 dimensional
configuration space is the space of all configurations having 16 two-dimensional land-
marks. That space encompasses all possible configurations for those 16 landmarks with
two coordinates. Should we record the locations of 16 landmarks on a two-dimensional
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image of the body of a piranha, and 16 landmarks on a two-dimensional image of a rat
skull, both configuration matrices are in the same configuration space. Obviously, the
landmarks on these two structures don’t have any kind of homology with one another, so
comparisons would be meaningless, but the measurements are in the same configuration
space. Clearly, any group of biologically similar organisms (with matched landmarks) will
occupy a relatively small part of configuration space because the locations of their corre-
sponding landmarks will be fairly similar. For example, in the 163 2 configuration space,
piranhas will occupy a very small part of the space � that space also contains the 163 2
two-dimensional coordinates of rat skulls.

The configuration space of K landmarks with M coordinates per landmark has K3M
dimensions. To specify the location of any shape in that space, we must specify K3M
components of a vector (or elements in a matrix).

Position or Location of a Configuration Matrix

The position of a configuration matrix is the location of the centroid of that matrix. This
centroid is the M-dimensional vector (two in the case of the two-dimensional landmarks
of piranhas) whose components are the averages of the X and Y coordinates of the land-
marks (in the two-dimensional case), so the centroid position is given by:

XC 5
1

K

XK

j51

Xj

YC 5
1

K

XK

j51

Yj

(4.5)

For example, Figure 4.3 shows the centroid position of the triangle seen earlier, which is
located at (0,20.333).

A configuration matrix is said to be centered if the average of all the coordinates is zero.
Centering is useful because it often simplifies the mathematics; it is done by translating
the configuration along the X- and Y-axes. That translation is done by adding a constant

0, 1

–1, –1 1, –1

FIGURE 4.2 Example of a triangle.
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(positive or negative) to the X- and Y-coordinates. To do this we first calculate the X and
Y centroid coordinates of the configuration matrix X as in Equation 4.5, then subtract the
centroid positions from each coordinate to form the centered configuration matrix XC:

XC5

ðX1 2XCÞ ðY1 2YCÞ
ðX2 2XCÞ ðY2 2YCÞ

^ ^
ðXK 2XCÞ ðYK 2YCÞ

2
664

3
775 (4.6)

Two configuration matrices that differ only in the position of the centroid are not differ-
ent shapes (they differ only by translation, one of the operations that do not alter shape).

Size of a Configuration Matrix

Before we can coherently talk about scale, we need to define what we mean (mathemati-
cally) by the term size. For configuration matrices, a number of different, non-equivalent
size measures have been used. It is not possible to say that one size measure is “correct”
or “preferable”, but it is important to explain the consequences of making a particular
choice. The most commonly used size measure in geometric morphometrics is called cen-
troid size, which is favored because it does not induce a correlation between size and shape
(at least under some error models, Bookstein, 1991), hence we restrict our discussion of
size to that particular measure. The centroid size (CS) of a configuration (X) is:

CSðXÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XK

i51

XM

j51

ðXij2CjÞ2
vuut (4.7)

where the sum is over the rows i and columns j of the matrix X. Xij is a standard notation
from linear algebra specifying the value located on the ith row and jth column of the

1, 1

0, 1

1, 1

Centroid

(0.0, 0.333)

FIGURE 4.3 The centroid of the triangle in Figure 4.2. The
coordinates of the centroid are the averaged coordinates of the
three vertices.
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matrix X and, in this case, Cj stands for the location of the jth component of the centroid.
C1 is the X-coordinate of the centroid and C2 is its Y-coordinate.

Centroid size is thus the square root of the sum of the squared distances of the land-
marks from the centroid. The distances from the centroid to each landmark of the trian-
gle are shown in Figure 4.4; the centroid size of this triangle is simply the square root
of the sum of the squared lengths of these lines. Centroid size is not altered by chang-
ing the position of the configuration, because this leads to all landmarks (and the
centroid) changing by a common amount. Similarly, multiplying the configuration
matrix X by a constant factor increases centroid size by the same factor. Two configura-
tions of landmarks that differ only in centroid size do not differ in shape (they differ
only in scale).

PRE-SHAPE SPACE

As we stated above, every configuration of K landmarks having M coordinates can be
thought of as a point in a space with K3M dimensions. (To avoid confusion, we should
make it clear that by “point” in this context we mean an individual shape, an entire con-
figuration of landmarks, not one landmark.) Some of the configurations in this space differ
only in centroid size; others differ only in location (coordinates of the centroid). We can
define a subset of configurations that do not differ in location or size by placing two
restrictions on each configuration matrix: (1) that it be centered, and (2) that centroid size
be one. These restrictions define a space called pre-shape space (Dryden and Mardia,
1998). In practice, we translate and scale each of the original configurations in our data so
that the new configurations meet the restrictions of pre-shape space. In doing this, we are
using two of the three operations that do not alter shape. Each of the new configurations
is a centered pre-shape.

1, 1

0, 1

1, 1

L1
L2

L3

FIGURE 4.4 Centroid size of the triangle in Figure 4.2,
calculated as the sum: (L121L221L32)1/25 2.16.
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The Shape of Pre-Shape Space

The two requirements imposed on this space mean that the summed squared land-
mark positions add up to one. The consequences of that property can be understood by
considering the set of points satisfying the restriction in an ordinary two-dimensional
space: the set of points is centered on the origin (0,0), and each point in the set has
coordinates satisfying the equation X21Y25 1. The set of points is a circle of radius
one, centered on the origin. This circle is a one-dimensional subspace (a curve) inhabit-
ing a two-dimensional space (a plane). Knowing that all points are equidistant from the
center means that we need specify only the direction of a point from the center to
define it uniquely; thus, the location of any point on the circle can be described suffi-
ciently by a single dimension (direction). Extending this to a three-dimensional space,
we now have the set of all points (X, Y, Z) centered on the origin (0,0,0) such that
X21Y21Z25 1. This is the surface of a sphere of radius one, centered on the origin,
and it is a two-dimensional subspace within a three-dimensional space. Again, the con-
straint that all points are on the surface allows us to describe the location of a point by
giving a direction from the center; the only difference from the circle is that we now
need two components to describe that direction (e.g. latitude and longitude). So, in talk-
ing about a pre-shape space, we are talking about the surface of a hypersphere centered
on the origin, which is the generalization of an ordinary sphere in K3M dimensions.
In that general case, we have:

XK

i51

XM

j51

ðXijÞ2 5 1 (4.8)

which states that the sum of all squared landmark coordinates is one. That hypersphere is
simply the equivalent of a sphere in more than three dimensions.

We can determine the number of dimensions in pre-shape space by considering the
number of dimensions that were lost in the transition from configuration space. One
dimension is lost in fixing centroid size to one, eliminating the size dimension of the con-
figuration space. Another M dimensions are lost in centering the configurations; eliminat-
ing the M dimensions needed to describe location (the coordinates of the centroid). Thus,
in moving from configuration space to pre-shape space, we moved to a space that has
M1 1 fewer dimensions, which is:

KM2 ðM1 1Þ5KM2M2 1 (4.9)

For two-dimensional configurations of landmarks, pre-shape spaces have 2K2 3 dimen-
sions; so the pre-shape space for triangles has three dimensions. For three-dimensional
configurations of landmarks, pre-shape spaces have 3K2 4 dimensions.

Returning to the three-dimensional sphere (because most of us have trouble imagining
spaces having more than three dimensions), you should be imagining pre-shape space to
be a hollow ball of radius one, centered at the origin (0, 0, 0). Arrayed on the two-dimen-
sional surface of this ball are points representing individual configurations of landmarks.
The two restrictions we have imposed on our configuration matrices mean that the config-
urations in this set do not differ in scale or location; we have used the operations of
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translation and scaling to remove the effects of (differences in) location and scale. We have
not yet rotated the shapes to remove the effects of rotation (that comes later, as we move
from pre-shape space to shape space). Thus, configurations of landmarks that differ only
by a rotation are located at different points in pre-shape space, as are configurations that
differ only in shape. This underscores an important point (which some may find counter-
intuitive): as we said earlier, configurations that differ only by a rotation (such as those
shown in Figure 4.1B) do not differ in shape. Because we have not yet removed all three
effects mentioned in Kendall’s definition of shape (location, scale and rotation), we have
not yet reached shapes. At present we are concerned with pre-shapes, i.e. configurations
that may differ by a rotation, by a shape change or by some combination of the two. In
pre-shape space, configurations that differ only by rotation are different points, as are con-
figurations that differ only in shape.

Fibers in Pre-Shape Space

To visualize the locations in pre-shape space of configurations that differ only in rota-
tion, we introduce the term fiber. A fiber (in the context of our particular discussion of pre-
shape space) consists of the set of all the points in pre-shape space that can be obtained by
rotating a particular centered pre-shape. The fiber is a circular arc that comprises the set of
all points in pre-shape space that can be “reached” by rotating the pre-shape matrix.
Figure 4.5 depicts the concept of fibers as an arc on the surface of a sphere (ignoring the
higher dimensionality of a pre-shape hypersphere). Two fibers are shown: arcs 1 and 2.
Arc 1 is the set of all possible rotations of the pre-shape Z1, and arc 2 is the set of all possi-
ble rotations of the pre-shape Z2. For a less abstract visualization of the concept of fibers,
we have drawn a cartoon (Figure 4.6) representing four fibers (in columns); the triangles
within a column differ solely by a rotation, whereas those in different columns also differ
in shape. (This visualization is somewhat limited, because a row does not accurately

1 2

Z1
Z2

FIGURE 4.5 Fibers in pre-shape space. The points Z1 and Z2

are the locations of pre-shapes on the hypersphere (centered and
scaled matrices computed from two original matrices X1 and X2,
which are not shown). Curve 1 passing through Z1 is a fiber, the
set of all centered and scaled pre-shapes differing from Z1 only
by rotation. Curve 2 is a fiber of pre-shapes differing from Z2

only by rotation. (The dotted curve is the “equator” of the hyper-
sphere, and does not represent a fiber.)
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represent the number of dimensions needed to describe shapes of triangles, as explained
in the next section.)

With the concept of fiber in hand, it is now possible to talk about the separation of
shapes and the distance between them. Figure 4.7 shows the same two fibers on the
curved surface of the pre-shape space hypersphere as in Figure 4.5. In addition, Figure 4.7
shows an arc (ρ) crossing the surface from one fiber to the other, and the chord (Dp) that
passes through the interior of the hypersphere between the same two surface points. We
can draw many such arcs connecting a rotation of the pre-shape Z1 with a rotation of the
pre-shape Z2. The arc we want is the shortest one � that is, the one connecting fibers at
their “point of closest approach”. Finding the shortest possible distance between points is
a common tactic for defining distances between objects in spaces. When we find that dis-
tance, we will find the rotation that is optimal in the sense of being the minimum distance
between shapes. The length of this arc is known as the Procrustes distance, and it is quanti-
fied by determining the angle between the radii that connect the center of the hypersphere
to the point at which the fibers most closely approach each other. Figure 4.8 shows the
cross-section through the pre-shape space in the plane defined by those two radii. The
angle subtended by the arc is ρ; the chord length is Dp. The length of the arc is equal to ρ
(in radians) times the length of the radius. Because we have constrained the radius to a
length of one, the length of the arc is the value of the angle. This value ranges from zero to
π/2; at π/2, the hemisphere may always be oriented so that one specimen is at the pole, the
farthest location the second may be located at is the equator.

FIGURE 4.6 An alternative visualization of the concept of a fiber. Each column shows rotations of a single
shape; triangles in different columns differ in shape. Each column represents a single fiber.
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SHAPE SPACES

In the previous section, we used the points of closest approach on the pre-shape fibers
to define the distance between two shapes. Now, we use the same criterion to construct a
shape space. This shape space contains one configuration from each fiber, one rotation of a
centered pre-shape. Conventionally, we select a convenient orientation of one pre-shape to
serve as the reference configuration; every other target (or subject) configuration is selected
as the rotation corresponding to the point of closest approach of its pre-shape fiber to the

1
2

Z1
Z2

Dp

ρ FIGURE 4.7 Determining the distance between the fibers of
pre-shapes. The arc ρ is the shortest distance across the surface
of the hypersphere from fiber 1 to fiber 2. The length of the arc
is the Procrustes distance. The length of the chord (Dp) is the
partial Procrustes distance.

ρ

ρ

Fiber 1 Fiber 2
Dp

FIGURE 4.8 A slice through pre-shape space showing the
Procrustes distance (ρ) and the partial Procrustes distance (Dp).
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reference. That is, the orientation is chosen to minimize the Procrustes distance between
the target and reference. The points on those fibers that are farther from the reference dif-
fer from it in both shape and rotational effects. By selecting the point of closest approach,
we reduce each fiber of pre-shapes to a single point (a shape); consequently, configura-
tions in this set differ only in shape.

The shape space we just described has fewer dimensions than the pre-shape space from
which it was derived. The number of dimensions lost in the transition is given by:

MðM2 1Þ
2

(4.10)

where M is the number of landmark coordinates. For two-dimensional landmarks,
Equation 4.10 simplifies to one, which reflects the fact that a planar shape can only be
rotated about its centroid on one axis (the axis perpendicular to the plane of the shape)
and still stay in the same plane. Consequently, shape spaces of two-dimensional configura-
tions of K landmarks have 2K24 dimensions. The four lost dimensions are those describ-
ing differences in size (21), translation (22) and rotation (21). For three-dimensional
landmarks, Equation 4.10 simplifies to three, which reflects the fact that a three-dimen-
sional shape can be rotated about its centroid on three distinct orthogonal axes in the
three-dimensional coordinate space. Subtracting three from the 3K24 dimensions of the
pre-shape space (from Equation 4.9) yields 3K27 dimensions for shape spaces of three-
dimensional shapes, which simplifies to five dimensions for the shape space of tetrahedra.
The seven lost dimensions are those describing differences in size (21), translation (23)
and rotation (23).

In the special case of triangles, the shape spaces defined above with centroid size still
equal to one, are the familiar two-dimensional surfaces of three-dimensional spheres.
Because this is a reasonably simple geometry to visualize and illustrate, we will focus on
triangles before returning to the general case. In Figure 4.9, we show half of a space deter-
mined by using the equilateral triangle as the reference. Because we retain the constraints
that each triangle is centered and scaled to centroid size of one, the hemisphere has a
radius of one. For convenience, the space is oriented so that the point representing the
equilateral triangle configuration is located at the pole. At the equator with maximal dif-
ference from the reference are various reflections of the reference (Rohlf, 1999, 2000 [see
Figure 1]). Collinear triangles (with all points along a single line) are located at a
Procrustes distance of π/4 from the reference. Although the shape space just described is
a useful construction, it does not satisfy the mathematician’s urge to find the smallest
distances between configurations with those shapes. To illustrate this point, we consider a
slice through the polar axis of the hemisphere of triangles just described (Figure 4.10).
As in pre-shape space, the distance of a shape (A) from the reference is ρ. The angle and
the arc length are unchanged because the dimension eliminated in the transition from
pre-shape space to this shape space did not contribute to the measurement of the shape
difference. It should be apparent in Figure 4.10 that the arc across the surface is not the
shortest possible distance between the two shapes. The chord passing through the interior
of the hemisphere would be shorter, but it is still not the shortest possible distance
between configurations with those shapes. We obtain that shortest possible distance, and
the relevant configurations, by changing the constraint on the centroid sizes of the two
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configurations. Conventionally, we keep the centroid size of the reference at one, and
allow the centroid size of the target to adopt the value that minimizes its distance from
the reference. This is equivalent to allowing the target to travel along its radius while the
reference stays on the surface. The point along the radius where the second shape is clos-
est to the target is some distance below the surface of the shape space, reflecting a reduc-
tion of the centroid size of the target. This point (B) is defined by the line that is
perpendicular to the target’s radius and passes through the reference’s position on the sur-
face. The corresponding centroid size of the target is cos(ρ); the distance between config-
urations is sin(ρ) and is called the full Procrustes distance (DF).

(0, 1)

DF

Dp

(0, 0) (1, 0)( 1, 0)

cos ( ρ)

B

A

ρ

ρ

FIGURE 4.10 A slice through part of
the space of aligned triangles at unit cen-
troid size, showing the relationships among
the distances between the reference shape
(at 0, 1) and A. The semicircle is a cross-
section of the space, which is a hemisphere
of radius one. The length of the arc is the
Procrustes distance (ρ), the length of the
chord is the partial Procrustes distance (Dp),
and the shortest possible distance (obtained
by relaxing the constraint on centroid size,
producing the configuration B) is the full
Procrustes distance (DF).

FIGURE 4.9 Half of the space of
triangles that have been centered,
scaled to unit centroid size and
aligned with a centered, scaled equi-
lateral triangle. The equilateral trian-
gle is at the pole. Lines of “latitude”
represent shapes equidistant from
the equilateral triangle. The “equa-
tor” corresponds to the set of trian-
gles with most different from the
reference, which for the case of
equilateral triangles, is a reflected
version of the reference (Rohlf,
1999).
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Because cos(ρ) decreases as ρ increases, scaling each configuration in the shape space to
cos(ρ) (where ρ is its distance from the reference) produces a new shape space sphere with
a radius of 1/2, tangent to the previous shape space at the reference shape (Figure 4.11).
This new space is Kendall’s shape space for triangles; it is the set of centered shapes in which
each is at the size and orientation that minimizes its distance from the reference. It may
appear that Kendall’s shape space is dramatically different from the previous shape space,
but certain key properties remain the same. One of these properties is the distance of the
target shape from the reference shape across the surfaces of the shape spaces. In the first
shape space, the distance of the target from the reference was ρ, the angle subtended by
the arc. In Kendall’s shape space, the angle subtended by the arc is now 2ρ, but the radius
is 1/2, so the arc length is 2ρ/2. Although distances between the reference and the targets
are not altered, distances between targets are (Slice, 2001). Another key property that
remains the same is the number of dimensions. In the transition between shape spaces, the
constraint on centroid size was changed; in Kendall’s shape space the constraint is cos(ρ)
instead of one. This still specifies a single value for each shape; configurations that differ
only in size are represented by a single point in Kendall’s shape space. Thus, Kendall’s
shape space for triangles is also the two-dimensional surface of a three-dimensional
sphere.

For configurations of landmarks that are more complex than triangles, we can apply the
same set of operations to move from pre-shape space to the two shape spaces. Regardless
of the number of landmarks and the number of coordinates of those landmarks, the transi-
tions involve: (1) selecting the rotations that are at the minimum distance from the refer-
ence in pre-shape space, and (2) finding the centroid sizes that fully minimize the distance
from the reference. Describing the geometric relationship of these spaces at higher dimen-
sions is rather demanding (Small, 1996), but near their poles (i.e. near the reference config-
urations) these spaces are expected to have similar properties to the spaces for triangles
(Slice, 2001).

Kendall’s shape space and all of the spaces described above are curved, non-Euclidean
spaces. This is important because the conventional tools of statistical inference assume a
linear, Euclidean space. Consequently, we cannot use those tools to analyze shapes in
Kendall’s shape space. Much of Kendall’s own work concerns statistical inference within
the curved space that bears his name, but most biologists do not need to work in that

(0, 1)

(0, 0) (1, 0)( 1, 0)

A

B

ρ

FIGURE 4.11 The relationship of
Kendall’s shape space to the space of
aligned triangles scaled to unit centroid size.
The outer semicircle is the cross-section of
the space of aligned triangles scaled to unit
centroid size, as in Figure 4.10. The inner cir-
cle is a cross-section through Kendall’s
shape space, which is the sphere of aligned
triangles scaled to cos(ρ). Kendall’s shape
space has a radius of one-half. Points A and
B represent the same shape at CS5 1 and
CS5 cos(ρ), respectively.
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space. As discussed in a later section of this chapter, it is possible to map locations in
Kendall’s shape space to locations in a Euclidean space tangent to Kendall’s shape space.
Like planar maps of the Earth, the Euclidean “maps” of shape space distort the relative
positions of shapes far from the tangent point. This becomes important when comparing
extremely dissimilar shapes. In most biological studies, the range of shapes will be small
relative to the curvature of the space, so the distortion will be mathematically trivial for
any well-considered choice of the tangent point (we discuss criteria for selecting the tan-
gent point in a later section). If you are comparing such highly dissimilar shapes that you
need to work in Kendall’s shape space, you will need a more detailed understanding of
this space than presented here. The excellent texts by Dryden and Mardia (1998) and
Small (1996) discuss the variables and procedures for carrying out inference in Kendall’s
shape space.

Finding the Angle of Rotation That Minimizes the Euclidean Distance
Between Two Shapes

To determine the angle of rotation required to place one pre-shape at a minimum
Procrustes distance from a second, it is sufficient to rotate the first shape (the target) to
minimize the summed squared distance between it and the reference. This distance we are
minimizing is the partial Procrustes distance. Because the Procrustes distance is a mono-
tonic function of the partial Procrustes distance, this minimization of the partial Procrustes
distance also minimizes the Procrustes distance.

An arbitrary rotation of the target form (of two-dimensional landmarks, M5 2) by an
angle θ maps the paired landmarks (XTj, YTj) of the target to the coordinates ((XTj

cos θ2YTj sin θ), (XTj sin θ1YTj cos θ)). The sum of the squared Euclidean distances
between the K landmarks of this rotated target and the reference is:

D2 5
Xk

j51

½ðXRj2ðXTjcos θ2YTjsin θÞÞ2 1 ðYRj2ðXTjsin θ1YTjcos θÞÞ2� (4.11)

where (XRj, YRj) are the coordinates of the landmark in the reference. To minimize this
squared distance as a function of θ, we take the derivative with respect to θ and set it
equal to zero:

2
XK

j51

2ðXRj 2 ðXTjcos θ2YTjsin θÞÞð2XTjsin θ2YTjcos θÞ
1 2ðYRj 2 ðXTjsin θ1YTjcos θÞÞðXTjcos θ2YTjsin θÞ

� �
5 0 (4.12)

and solve for θ:

θ5 arctangent

PK
j51 YRjXTj 2XRjYTjPK
j51 XRjXTj 1YRjYTj

 !
(4.13)

which gives us the angle by which to rotate the target to minimize its distance from the
reference.
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THE SPACES OF THREE-DIMENSIONAL CONFIGURATIONS

As discussed above, the set of all possible configurations of K landmarks with M coordi-
nates is called a configuration space, and this space has K3M dimensions. Centering, scal-
ing and rotating to a specific alignment all select subspaces with fewer dimensions.
Because the same operations were used to select these subspaces, the same formulae can
be used to determine their dimensions. Centering removes M dimensions because the cen-
troid has M coordinates, so the space of centered coordinates has KM2M dimensions,
which is 3K2 3 when M5 3. Scaling removes one dimension because we are still using
centroid size, which is a one-dimensional scalar. Consequently, the space of centered and
scaled configurations (pre-shapes) has KM2M2 1 dimensions (Equation 4.9), which is
3K2 4 when M5 3. Rotation to a standard orientation removes M(M2 1)/2 dimensions
(Equation 4.10), which are the number of orthogonal axes on which an M-dimensional
configuration can be rotated. When M5 3, there are three axes, and the space of aligned
configurations (a shape space) has 3K2 7 dimensions.

When we impose on two-dimensional configurations of landmarks (K3 2 matrices) the
requirements of centering at the origin and scaling to unit centroid size, we generate a
pre-shape space that has the form of the surface of a hypersphere with a radius of one, cen-
tered on the origin. When we impose the same requirements on three-dimensional configura-
tions, we again get a pre-shape space that is the surface of a hypersphere with a radius of one,
centered on the origin. Pre-shape spaces generated by these operations have the same general
shape (differing only in the number of dimensions), regardless of the values of K andM.

The pre-shape spaces described above contain every possible rotation of every possible
M-dimensional shape that can be formed of K landmarks. Each shape is represented by
the set of all possible rotations of that shape, and the distance between shapes is the mini-
mum distance between these sets. As mentioned above, the set of all possible rotations of
a shape is called a fiber. This name seems apt when M5 2; there is only one axis of rota-
tion, so we can visualize a one-dimensional string lying in the pre-shape space. When
M5 3, calling the set of rotations a fiber may seem less appropriate because there are
now three orthogonal axes of rotation, which does not fit our mental image of a one-
dimensional string. However, the actual concept is still the same (the set of all possible
rotations), and it is just as useful. Because different fibers represent different shapes, they
do not intersect; and if they do not intersect, we can find the shortest distance between
them. That distance is the difference between centered and rescaled configurations that is
not due to the rotation of one relative to the other. Therefore, regardless of the values of K
and M, the distance between two shapes in the same pre-shape space is the distance
between two points on the surface of a hypersphere. Now that we are again on (relatively)
familiar ground, we can see that we must solve for the rotation of the target that mini-
mizes the partial Procrustes distance (the chord length), which can then be converted to
the Procrustes distance (arc length) or the full Procrustes distance (the cosine of the angle
subtended by the arc). Having a third set of coordinates makes the computation more
tedious, but the procedure is the same.

The shape spaces we generate by the operations described above are hyperspheres tan-
gent to their respective pre-shape spaces at the location of the reference shape. If centroid
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size is fixed at one, the space is the surface of a hypersphere of radius one. If centroid size
is scaled to the cosine of the Procrustes distance, the space is Kendall’s shape space, the
surface of a hypersphere of radius one-half.

A NUMERICAL EXAMPLE FOR THE SIMPLEST CASE

To make the preceding discussion of theory more concrete and accessible, we apply the
ideas to the simplest useful case, the space of triangles (this space has been discussed
extensively in Small, 1996; Dryden and Mardia, 1998; Rohlf, 2000; Slice, 2001). We have
used this example throughout this chapter, but we now pull all the information together.
There are other approaches to constructing the matrices representing shapes in Kendall’s
shape space, but the sequence of steps we follow here is easily illustrated and requires rel-
atively simple computations.

We begin with two triangles, X and W, drawn on a flat surface (Figure 4.12). X is the
triangle from Figure 4.2, with coordinates (21, 21), (1, 21) and (0, 1); triangle W has coor-
dinates (1.07, 21.64), (3.10, 20.72) and (1.55, 0.82). Each triangle has K5 3 landmarks with
M5 2 coordinates; thus the configuration matrix for each has six entries:

X5
21 21
1 21
0 1

2
4

3
5 W5

1:07 21:64
3:10 20:72
1:55 0:82

2
4

3
5 (4.14)

The six landmark coordinates of each triangle contain six pieces of information needed
to determine all the properties of that triangle: size, shape, location, and rotation. Not only
do we need all six coordinates to determine these properties; we cannot infer the value of
any one coordinate from the other five. Because we need all six coordinates to determine
the triangle, we can say there are six degrees of freedom. This also helps to explain why the
configuration space of triangles has six dimensions.

1

3

X

W

2

3

1 2

FIGURE 4.12 Two triangles, X (from Figure 4.2)
and W. The vertices are numbered to indicate their
homologies.
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We can infer from the coordinates that the two triangles have different locations, as sug-
gested in the figure. We confirm this by calculating the coordinates of the centroid using
Equation 4.5, reproduced here:

XC 5
1

K

XK

j51

Xj

YC 5
1

K

XK

j51

Yj

(4.15)

For triangle X, the coordinates of the centroid are XC5 (1/3)(211 11 0)5 0, and
YC5 (1/3)(211 211 1)520.333. For triangle W, the coordinates of the centroid are
XC5 (1/3)(1.071 3.101 1.55)5 1.907 and YC5 (1/3)(21.641 20.721 0.82)520.513.
We use the coordinates of the centroid to form the centered configuration matrix XC
by subtracting the centroid coordinate from the corresponding coordinate of each
landmark:

XC5

ðX1 2XCÞ ðY1 2YCÞ
ðX2 2XCÞ ðY2 2YCÞ

^ ^
ðXK 2XCÞ ðYK 2YCÞ

2
664

3
775 (4.16)

This produces the centered configuration matrices:

Xcentered 5
ð212 0Þ ð212 ð20:333ÞÞ
ð12 0Þ ð212 ð20:333ÞÞ
ð02 0Þ ð12 ð20:333ÞÞ

2
4

3
55

21 20:667
1 20:667
0 1:333

2
4

3
5 (4.17)

and

Wcentered 5
ð1:072 1:907Þ ð21:642 ð20:513ÞÞ
ð3:102 1:907Þ ð20:722 ð20:513ÞÞ
ð1:552 1:907Þ ð0:822 ð20:513ÞÞ

2
4

3
55

20:837 21:127
1:193 20:207

20:357 1:333

2
4

3
5 (4.18)

The centered triangles are shown in Figure 4.13. One consequence of centering is that
the two triangles are now superimposed; another is the loss of two degrees of freedom.
Knowing that the centroid has coordinates (0, 0), which are the means of the landmark
coordinates, we can use the coordinates of any two landmarks to determine the coordi-
nates of the third landmark. Accordingly, the space of centered triangles (which we have
not discussed previously) is a four-dimensional space. Another way to think of this is that
the two coordinates of the centroid, specifying the location of the triangle, account for two
of the six dimensions of the configuration space. Also, now that all individuals have the
same value for their centroid coordinates, the variation due to position disappears, collaps-
ing that dimension of variation to a point at the origin.
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The centered triangles are not in pre-shape space. To put them there, we need to rescale
each so that its centroid size is one. The formula for centroid size is:

CSðXÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XK

i51

XM

j51

ðXij2CjÞ2
vuut (4.19)

which is the square root of the sum of the squared distances of the landmarks from the
centroid. Given that the centroids of Xcentered and Wcentered are both at (0, 0), we can simply
sum the squared coordinates:

CSðXcenteredÞ 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð21:0Þ2 1 ð20:667Þ2 1 ð1:0Þ2 1 ð20:667Þ2 1 ð0Þ2 1 ð1:333Þ2

q

5 2:160
(4.20)

CSðWcenteredÞ 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð20:837Þ2 1 ð1:127Þ2 1 ð1:193Þ2 1 ð20:207Þ2 1 ð0:357Þ2 1 ð1:333Þ2

q

5 2:311
(4.21)

Dividing each coordinate of the centered triangle by its centroid size produces the pre-
shape matrices:

Xpre-shape 5
1

2:160

21 20:667
1 20:667
0 1:333

2
4

3
55

20:463 20:309
0:463 20:309
0:000 0:617

2
4

3
5 (4.22)

Wpre-shape 5
1

2:311

20:837 21:127
1:193 20:207

20:357 1:333

2
4

3
55

20:362 20:488
0:516 20:089

20:154 0:577

2
4

3
5 (4.23)

3

X

W

1 2

1

2

3 FIGURE 4.13 Centered triangles computed from X and W.
Computation of the centroids of X and W is given by Equation
4.15; computation of the landmark coordinates after centering is
given by Equations 4.16�4.18. Vertices are numbered to indicate
their homology.
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These centered and scaled triangles are shown in Figure 4.14.
Because size differences do not contribute to the differences between Xpre-shape and

Wpre-shape, another degree of freedom has been lost (this is the third degree of freedom
lost). In other words, size is no longer a dimension of possible variation; configurations
that differ only in size are considered equivalent. After subtracting the three degrees of
freedom representing differences in location and centroid size, we are left with three
degrees of freedom to describe differences among triangle pre-shapes � triangles that
are centered and scaled to unit centroid size. Accordingly, the pre-shape space of
triangles is a three-dimensional space. As explained above, it is the three-dimensional
surface of a four-dimensional hypersphere, so it is not an easy space to visualize or
illustrate.

To make the transition from pre-shape space to shape space, we begin by choosing one
shape and placing it in a convenient orientation; this configuration will be the reference.
For this demonstration it is convenient to use X in the orientation shown in the last few
figures. Choosing X as the reference means that W will be the target, so the next step is to
rotate W, in the plane of the page around its centroid through some angle (θ). The rotation
places it in the orientation that minimizes the difference between the two sets of landmark
coordinates (Figure 4.15). After the rotation, the X- and Y-coordinates of each landmark
will be mapped to the new coordinates (X cos θ2Y sin θ), (X sin θ1Y cos θ). Thus, the
rotated form of Wpre-shape will be:

Wpre-shape;rotated 5
ð20:362 cos θÞ2 ð20:488 sin θÞ
ð0:516 cos θÞ2 ð20:089 sin θÞ
ð20:154 cos θÞ2 ð0:577 sin θÞ

ð20:362 sin θÞ1 ð20:488 cos θÞ
ð0:516 sin θÞ1 ð20:089 cos θÞ
ð20:154 sin θÞ1 ð0:577 cos θÞ

2
4

3
5 (4.24)

Before we can pick the value of θ that will minimize the difference between the refer-
ence (Xpre-shape) and the rotated target (Wpre-shape,rotated), we need a criterion to define

3

X

W
1 2

1

2

3
FIGURE 4.14 Centered triangles from Figure 4.13, scaled to
unit centroid size. Computation of centroid size is given in
Equations 4.19�4.21. Computation of landmark coordinates after
scaling is given by Equations 4.22 and 4.23.
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what is being minimized. The criterion that leads to the shape space discussed earlier is
minimization of the square root of the sum of the squared distances between the corre-
sponding landmarks (the distances d1, d2, and d3 shown in Figure 4.15). This quantity can
be computed directly from the squared differences between the corresponding coordinates
of the landmarks:

D5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX112X21Þ2 1 ðY112Y21Þ2 1?1 ðX132X23Þ2 1 ðY132Y23Þ2

q
(4.25)

(There are other criteria that lead to other superimpositions of the two triangles; one is dis-
cussed below, others in Chapter 5.)

With this criterion in hand, we can solve for the unique value of θ at which D is mini-
mized. In our example, that value is θ5219.2�. When we insert this value into the matrix
for Wpre-shape, rotated (Equation 4.24), we get:

Wpre-shape; rotated 5
20:502 20:341
0:458 20:254
0:044 0:596

2
4

3
5 (4.26)

Under the conditions set out above, this is the optimal alignment to the reference form:

Xpre-shape 5
20:463 20:309
0:463 20:309
0:000 0:617

2
4

3
5 (4.27)

Figure 4.16 shows the two triangles under these conditions.

X

W
d1

d3

d2

θ

FIGURE 4.15 Optimal alignment of W to X will be
achieved by rotating W around its centroid through an
unknown angle θ to minimize the square root of the sum
of the squares of distances d1, d2, and d3.
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The distance minimized above is the partial Procrustes distance, so we will label it Dp

from this point forward. The value of Dp in this particular case is:

Dp 5 ½ð20:5022ð20:463ÞÞ2 1 ð20:3412ð20:309ÞÞ2 1 ð0:45820:463Þ2 1 ð20:2542ð20:309ÞÞ2

1 ð0:0442 0Þ1 ð0:5962 0:617Þ�1/2
5 0:089

(4.28)

This is the minimum length of the chord connecting the pre-shape fibers of X and W in
the pre-shape space of triangles. Because W is superimposed to meet the criterion of mini-
mizing the partial Procrustes distance, Wpre-shape,rotated is said to be in partial Procrustes
superimposition on the reference form Xpre-shape. We can solve for the Procrustes distance,
the arc length across the surface between Xpre-shape and Wpre-shape,rotated, because the radius
of the hypersphere is constrained to be one. The perpendicular from the chord to the cen-
ter of the hypersphere bisects the angle ρ (Figure 4.17), which has the same value (in
radians) as the arc length. Thus, there is a very simple relationship between Dp and ρ; spe-
cifically, ρ5 2 arcsin (Dp/2). In our example, Dp and ρ are so small they cannot be distin-
guished with fewer than 4 decimal places (0.08941 and 0.08943, respectively), which is not
surprising given that ρ represents a very small angle of just 5.1�.

Because rotational effects do not contribute to the differences between Xpre-shape and
Wpre-shape, rotated, another degree of freedom has been lost (the fourth). Rotation, or ori-
entation, is no longer a dimension of possible variation; configurations that differ only
by rotation are considered equivalent. After subtracting the four degrees of freedom
representing differences in location and centroid size and rotation, we are left with
two degrees of freedom to describe differences among triangles. Accordingly, the
shape space of triangles is a two-dimensional space. As explained above, it is the two-
dimensional surface of a three-dimensional sphere, and is a relatively easy space to
visualize or illustrate.

Xpre-shape and Wpre-shape, rotated are configurations in a shape space, but they are not yet in
Kendall’s shape space. To make this final transition, we need to solve for the centroid size

X W

1

2

3 FIGURE 4.16 Triangles X and W after rotation of W to minimize
the Procrustes distance. Computation of the landmark coordinates of
W after rotation is given in Equation 4.24; the result is given in
Equation 4.26. Vertices are numbered to indicate their homology.
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that would further reduce the distance between the shapes X and W; we are taking W to B
(see Figure 4.17). As indicated in Figure 4.17, that distance (DF, the full Procrustes distance)
is measured along a line segment orthogonal to the radius of Wpre-shape,rotated, passing
through Xpre-shape. In our example, ρ is small (0.0894 radians); its cosine is near one (0.996)
so we need make only a very slight adjustment to convert the coordinates of Wpre-shape,

rotated to Wshape:

Wshape 5 cosð0:089Þ
20:5021 20:3414
0:4583 20:2542
0:439 0:5956

2
4

3
55

20:5001 20:3401
0:4564 20:2532
0:0437 0:5932

2
4

3
5 (4.29)

This is the triangle with the same shape as W, but it is now in Kendall’s shape space
with the reference at triangle Xpre-shape. Because the full Procrustes distance was used to
determine the coordinates of the landmarks in Wshape, we can say that Wshape is in full
Procrustes superimposition on the reference form Xpre-shape.

TANGENT SPACES

The curvature of shape space makes statistical inference more difficult in this space
than it is in Euclidean spaces and most of the familiar methods of multivariate statistical

Dp

ρ/2

DF

cos ( ρ)

sin (ρ/2)

W

B

X

FIGURE 4.17 The relationships among the Procrustes distance,
ρ, full Procrustes distance DF5 sin(ρ), and partial Procrustes distance
Dp5 2 sin(ρ/2). The configuration at point B represents a triangle in
Kendall’s shape space.
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analysis assume a Euclidean space. As mentioned earlier in this chapter, the mathematics
of statistical inference in Kendall’s shape space has been developed by Kendall and others.
However, in this section we discuss the replacement of Kendall’s shape space with a
Euclidean approximation.

The problem of replacing a curved space with a Euclidean approximation is illustrated
for the special case of triangles in Figure 4.18. As before (see Figure 4.11), the outer hemi-
sphere is the space constructed by aligning pre-shapes (with centroid size fixed at one) to
minimize the partial Procrustes distance (the square root of the summed squared distances
between corresponding landmarks). The inner sphere is Kendall’s shape space, con-
structed by scaling the aligned target shapes to centroid size5 cos(ρ). These two spaces
share a common point, the reference shape, because the distance of the reference from
itself is zero, so cos(ρ) is one. Tangent to both of these spaces, at the reference shape, is a
Euclidean plane. We also need to decide how we will construct the projection of shapes
onto the tangent plane, which includes deciding (1) which space will be the source of the
configurations projected onto the tangent plane, and (2) what rule we will use to deter-
mine the direction of the projection. (We also need to decide how to choose an appropriate
reference configuration to serve as the tangent point, which is discussed in the next
section.)

Figure 4.18 illustrates two common approaches to projecting from one space onto
another. One approach is to project to the new space from the centroid of some reference
space. In this case, the reference space is the hemisphere of aligned pre-shapes, so the pro-
jections are along the radii of this hemisphere to the tangent space. In this stereographic
projection, the shape represented by points B and A (at centroid sizes cos(ρ) and one,
respectively) map to the same location (C) in the tangent space. The distance in the plane
from the reference to C is greater than the arc length from the reference to B (the

p

(0, 0) (1, 0)( 1, 0)

A

B

E CDTangent plane

FIGURE 4.18 Tangent space to shape spaces of triangles and projections onto the tangent space (Rohlf, 1999).
As in Figure 4.11, the outer hemisphere is a section through the space of centered and aligned shapes scaled to
unit centroid size, and the inner circle is a section through Kendall’s shape space of centered and aligned shapes
scaled to cos(ρ). The plane is tangent to the sphere and the hemisphere at the point of the reference shape. The
configuration at point B represents a triangle in Kendall’s shape space; A is the same shape scaled to unit centroid
size. C is a stereographic projection of B onto the tangent plane. D is the orthogonal projection of A onto the tan-
gent plane, and E is the orthogonal projection of B onto the tangent plane.
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Procrustes distance); and the discrepancy between these distances increases as ρ increases
and the distance in the tangent plane approaches infinity. The other approach to projecting
from one space onto another is to project along lines that are orthogonal to the new space.
Point E represents the orthogonal projection of B onto the tangent plane, and this projec-
tion produces distances from the reference in the tangent plane that are less than the
Procrustes distance. As in the stereographic projection, the magnitude of the discrepancy
between the distances increases as ρ increases, but in the orthogonal projections, distances
in the tangent plane asymptotically approach the maximum equal to the radius of the
shape space.

The different projection methods do have different statistical properties (Rohlf 1999,
2000; Slice 2001). Most of the applications discussed in this text will be using partial
Procrustes superimposition, which is an orthogonal projection from the oriented pre-shape
space hemisphere onto the linear tangent space (see Figure 4, Rohlf, 1999 or Figure 4.18 of
the text).

Selecting the Reference Configuration

Many of the steps involved in placing target configurations in shape space, or in the
Euclidean space tangent to it, are functions of the reference shape (although the strict defi-
nition of Kendall’s shape space does not require a reference, we use this approach to
describe one way to construct such a space). For example, in the construction of a shape
space, each target configuration is rotated to the orientation that minimizes its distance
from the reference. Also, in the construction of Kendall’s shape space, the scaling of each
target configuration is a function of its distance from the reference. Moreover, the tangent
space is tangent to shape space at the reference. Perhaps most important, the discrepancies
between distances in the tangent space and those in shape space increase as a function of
distance between target and reference. Thus, the choice of reference can have important
consequences.

Most interesting biological questions will be concerned with differences among more
than two specimens. The inferences based on analyses of multiple specimens will be based
on all of the distances among specimens, not just their distances from the reference.
Accordingly, the choice of a reference must consider the effects of that choice on approxi-
mating distances among target specimens, not just distances of target specimens from the
reference. Not only will distances from the reference be distorted, so too will the distances
among target specimens, and this distortion will also be a function of their distances from
the reference. If these distortions are large, inferences based on distances in the Euclidean
tangent space will be unreliable.

One possible reference is the average shape of the entire sample (computed using meth-
ods discussed in Chapter 5). This approach has the advantage that it minimizes the aver-
age distance from the reference, which minimizes the average distortions of interspecimen
distances projected to the tangent plane (Bookstein, 1996; Rohlf, 1998). However, Marcus
et al. (2000) analyzed differences in skull shape among representatives of several mamma-
lian orders and found that most Procrustes distances are closely approximated by the
Euclidean distance in the tangent space. The principal exceptions were the distances from
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a muskrat to a dolphin (which is not surprising, given the extraordinary reorganization of
the cetacean head). This result suggests that most biologists are unlikely to encounter any
cases in which the differences among specimens are large enough to worry about the ade-
quacy of the linear approximations. It is unlikely that distances in the tangent space will
poorly approximate distances in shape space. Even so, using the average shape of all spe-
cimens in the data minimizes the risk that such a problem will occur. The use of any other
reference carries the responsibility to ensure that Euclidean distances in the tangent space
are accurate approximations of the distances in shape space.

Dimensions and Degrees of Freedom

The issue of degrees of freedom (or the number of independent measurements in a sys-
tem) is important for statistical analyses, but it can be confusing, especially when talking
about shape. To clarify it, we can consider a simple example. Suppose we wish to describe
the location of a notebook in a room. We could give its location in terms of three distances
from a reference point (such as the corner of the door of the room), and this is equivalent
to defining its position by three Cartesian coordinates relative to that reference point. In
this example, there are three degrees of freedom for the location of the notebook because
three variables are required to describe it. Knowing those variables and the reference suf-
fices to find the notebook. However, if the notebook is on a chair, and all chairs are known
to be the same height, specifying the height conveys no more information than saying that
the notebook is on a chair. Knowing what we do about the chairs, we only need two addi-
tional pieces of information, the X- and Y-coordinates, to specify the location of the note-
book in the room. Thus, by specifying the constraint that the notebook is on a chair of
fixed height, we have removed one of the three degrees of freedom.

We can take this example a step further by specifying that all the chairs are located
along walls of the room, with every chair touching the wall. Now, the X- and Y-coordi-
nates can be replaced by the distance (L) around the perimeter of the room from the door
to the notebook, and the direction of the measurement (clockwise or counter-clockwise). If
we agree that distances around a perimeter are always measured in the same direction,
then the value of L is sufficient to describe the location of the notebook. The additional
constraints (chairs against the wall, perimeter measured in clockwise direction) have
reduced the degrees of freedom from two (X and Y) to one (L). We have not actually elimi-
nated either X or Y; rather, we have merely replaced that pair by L. Nor have we lost any
information; given L, and the direction in which L is measured, as well as the height of the
chairs, we can reconstruct the original three Cartesian coordinates (X, Y, and Z) of the
notebook.

In the case of two-dimensional shapes, we start out with K landmarks in two dimen-
sions, so we have 2K coordinates, which constitute 2K independent measurements
(because each coordinate is independent of the others, in principle). In the course of super-
imposing the shapes on the reference form, we perform three operations: (1) we center the
matrix on the centroid, thereby losing two degrees of freedom; (2) we set centroid size to
one, thereby losing another; and (3) we compute the angle through which to rotate the
specimen, thereby losing one more. By the end, we have lost four degrees of freedom as a
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consequence of applying these constraints to the data. However, unlike the notebook
example, we still have 2K variable coordinates in our data matrix; none of them have been
removed or constrained. We have not lost degrees of freedom by removing coordinates,
because the loss of degrees of freedom is shared by all coordinates � each coordinate has
lost some fraction of a degree of freedom because each is partially constrained by the
operations of centering, scaling and rotation. Consequently, we have too many variable
coordinates for the degrees of freedom. The primary advantage of the thin-plate spline
methods (discussed in Chapter 5) is that we can work with 2K2 4 variables, so that the
number of variables and the number of degrees of freedom are the same. The situation is
even worse in the case of three-dimensional data, when we have 3K variable coordinates
but only 3K2 7 degrees of freedom.

SUMMARY

Because there are several different morphometric spaces and distances, some with only
slightly different names, we summarize them below.

The configuration space is the set of all matrices representing landmark configurations
that have the same number of landmarks and coordinates. This space has K3M dimen-
sions, where K is the number of landmarks and M is the number of coordinates.

The pre-shape space is the set of all K3M configurations with a centroid size of one, cen-
tered at the origin. This space is the surface of a hypersphere of radius one. Because of the
centering, configurations that differ only in position are represented as the same point in
pre-shape space. Similarly, because of the scaling, configurations that differ only in cen-
troid size are represented by the same point in pre-shape space. Consequently, this space
has KM2 (M1 1) dimensions; M dimensions are lost due to centering, and one dimension
is lost due to scaling. In pre-shape space, the set of all configurations that may be con-
verted into one another by rotation lies along a circular arc called a fiber, which lies on the
surface of the pre-shape hypersphere. The distance between shapes in pre-shape space is
the length of the shortest arc across the surface connecting the fibers representing those
shapes, and is called the Procrustes distance. Because the radius of the pre-shape hyper-
sphere is one, the length of the arc is also the value (in radians) of the angle subtended (ρ).

To construct a shape space, we select one point on each fiber, removing differences in
rotation. The number of axes on which a configuration can be rotated is a function of the
number of landmark coordinates: M(M2 1)/2. This also specifies the number of dimen-
sions that are lost in the transition from pre-shape space to shape space (1 if M5 2, 3 if
M5 3). The construction of a shape space begins with the selection of one shape in a con-
venient orientation to serve as the reference configuration. Every other shape (called a target
configuration) is placed in the orientation that corresponds to the location on its fiber that
is closest to the reference. This orientation is the position that minimizes the square root of
the sum of the squared differences between the coordinates of corresponding landmarks.
When minimized simply by rotation, this quantity is called the partial Procrustes distance.
Configurations that satisfy this condition are said to be in partial Procrustes superimposition
on the reference. The partial Procrustes distance is the length of the chord of the arc
between the fibers in pre-shape space.
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After rotation to partial Procrustes superimposition, the square root of the sum of the
squared differences between the coordinates of corresponding landmarks can be further
reduced by rescaling the target to centroid size of cos(ρ). Configurations that satisfy this
condition are said to be in full Procrustes superimposition on the reference; and the resulting
distance between shapes (square root of the sum of the squared differences between the
coordinates of corresponding landmarks) is the full Procrustes distance. The set of shapes in
full Procrustes superimposition comprises a hypersphere of radius one-half, inside the
hypersphere of shapes in partial Procrustes superimposition, and tangent to the larger
hypersphere at the reference. This smaller, inner hypersphere is Kendall’s shape space.
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C H A P T E R

5

The Thin-plate Spline: Visualizing
Shape Change as a Deformation

In geometric morphometrics, the thin-plate spline serves three functions. First, it is used
as a tool for visualizing changes in shape. Second, it provides a coordinate system for the
tangent space, a particularly convenient one for landmark data because the number of
variables is 2K2 4 (for two-dimensional data) or 3K2 7 (for three-dimensional data).
Third, the metric underlying the thin-plate spline is also used for superimposing semi-
landmarks. In this chapter, we briefly discuss each of these three purposes, then present a
basic overview of the mathematical idea of a deformation and the mathematical metaphor
underlying the thin-plate spline, which is a particular model of a deformation. We then
discuss how it can be decomposed to yield a useful set of variables. We then summarize a
method for sliding semilandmarks based on the thin-plate spline. In general, we present
a largely intuitive overview before delving more deeply into the mathematics, reserving
more technical details to the appendix of this chapter.

The graphical depiction of shape coordinates is fundamentally limited because they
cannot tell us what happens between landmarks because we have no measurements at
those locations. Sometimes it is obvious what happens between landmarks, as in
Figure 5.1, where we can see that the snout elongates relative to the eye. That is obvious
because the posterior eye landmark is displaced towards the anterior eye landmark, and
that anterior eye landmark is not displaced towards the snout � so the snout must be
lengthening relative to the eye. However, it is not so obvious whether the postorbital
region is elongating (relative either to the head or body). Similarly, it is difficult to judge
whether the head (as a whole) elongates relative to the post-cranial body. The problem is
not that we lack landmarks in the relevant regions; rather, it is that so many landmarks
are displaced relative to the others that it is mentally exhausting to track what happens
between them all. That tracking requires examining the lengths of all the vectors to deter-
mine whether several landmarks are displaced to a similar degree in concert or, instead,
if some are displaced relatively more than others (thereby increasing or decreasing the
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distance between them). Even the landmarks that are not displaced relative to others must
be considered. What we need is a method for visualizing changes between landmarks
over the entire form.

That visualization is the primary purpose of the thin-plate spline. Using it, we can inter-
polate between landmarks, taking all displacements of all landmarks relative to all others
into account (Figure 5.2). There are many different types of interpolation functions avail-
able (see Dryden and Mardia, 1998), all of which attempt to estimate unknown displace-
ments between landmarks from known displacements at the landmarks. The thin-plate
spline method uses a mathematical approach to this interpolation that is optimally
smooth, producing interpolations with the fewest possible abrupt changes or differences.
Other spline methods are available, but have seen little, if any, use in geometric morpho-
metrics. Deformation grid plots based on thin-plate splines are very effective for
two-dimensional data. Effective presentation of three-dimensional data using the spline is
challenging and other methods, such as wireframes, tend to be used to represent changes
in three-dimensional data.

The other major purpose of the spline has been mentioned previously in this text.
As mentioned several times in this text, we need a set of shape variables to use in conven-
tional statistical tests, by which we mean that the number of variables matches the degrees
of freedom in the data. Specifically, when working with two-dimensional landmark data,
we need a set of variables that spans the entire space of our data but numbering only
2K2 4 for two-dimensional data (more generally, numbering (KM2 12M2 (M (M2 1)/2))
where K is the number of landmarks in M dimensions). The thin-plate spline method can
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FIGURE 5.1 Ontogenetic change in body shape
of Serrasalmus gouldingi, depicted by relative displa-
cements of Bookstein shape coordinates.
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be used to produce 2k2 4 (or 3k2 7 in three dimensions) orthogonal basis vectors, which
allow us to express any shape change in the k landmarks using only 2k2 4 or 3k2 7
coordinates, called partial warp scores, as described in detail later. There is no loss of
information in this process, and no changes in distances (in the linear tangent space)
between specimens caused by this change from landmark locations relative to the refer-
ence to locations along the axes produced by the thin-plate spline method. This is a
dimensionality reduction, from 2k to 2k2 4, or 3k to 3k2 7, with no loss of information,
leaving us with variables well suited to conventional, analytic multivariate statistical
techniques.

The situation becomes more complex when we start to use semilandmarks, as semiland-
marks have lost 1 degree of freedom per semilandmark after alignment. If we have a two-
dimensional system with k landmarks, and l semilandmarks, there will be 2k1 l2 4
degrees of freedom in the data, but 2k1 2l coordinates. These data can be expressed as
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FIGURE 5.2 Ontogenetic change in body shape of
S. gouldingi, depicted both by relative displacements
of Bookstein shape coordinates and by the thin-plate
spline.
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2k2 4 partial warp scores, but this no longer matches the degrees of freedom in the data.
Therefore, other approaches to dimensionality reduction must be used, such as Principal
Components Analysis.

The spline allows a decomposition of a bending energy matrix describing the differ-
ences into partial warps, which provides such a set of orthogonal vectors; the partial warps
supply a basis for the tangent space of all possible shape differences relative to the refer-
ence. Unlike the coordinates obtained by the Procrustes-based superimposition methods,
the thin-plate spline coefficients (called partial warp scores) can be used in conventional sta-
tistical tests without adjusting the degrees of freedom, so long as the data contains no
semilandmarks, as noted above. Also unlike the coordinates produced by the two-point
registration, which also have the appropriate number for statistical tests, the partial warp
scores enable using the correct tangent space measure of distance � the partial Procrustes
distance. Changing from one orthonormal basis to another does not alter the distances in
this linear tangent space to shape space. Using partial warp scores you will get the
same distances between specimens as you get using the coordinates obtained by the
Procrustes (GPA) superimposition, in a linear tangent space approximation. To get
the same statistical results, you do need to adjust correctly the degrees of freedom present in
the landmark data.

Additionally, the thin-plate spline provides an approach for superimposing (sliding)
semilandmarks. One approach to semilandmark alignment is to minimize the distance
between corresponding semilandmarks, alternatively, the approach based on the thin-plate
spline slides the semilandmarks to produce the smoothest (least localized) deformation of
one curve into another. The thin-plate spline method thus provides a smooth deformation
criterion for semilandmarks.

In summary, the thin-plate spline provides a visually interpretable description of a
deformation, with the same number of variables as there are statistical degrees of freedom
so long as the data consist solely of landmarks. Even if we were not concerned with the
advantages of the spline for graphical analysis, nor wished to use it for sliding semiland-
marks, we might still want to use the partial warps for purposes of statistical inference.
Many of the popular programs for statistical shape analysis use partial warp scores in
their internal calculations, although this may change in the future as semilandmarks are
increasingly used. Even if we were not concerned with the advantages of the partial warps
for statistical analysis, we might still wish to use the thin-plate spline for its graphical
capabilities or to slide semilandmarks. You can use the spline to depict your results, and
you can use partial warps in your statistical analyses without worrying that the mathemat-
ical details (and complexities) will have any impact on your results, although you will
have to be aware of the difficulties posed by the dimensionality of semilandmarks. The
spline is a convenient tool for visual display and for obtaining variables with the correct
degrees of freedom � it is nothing more (or less) than that.

In this chapter, we begin with a basic overview of the mathematical idea of a deforma-
tion. We then discuss the mathematical metaphor underlying one particular model of a
deformation, the thin-plate spline, and how we can decompose it to yield variables. In
general, we present a largely intuitive overview before delving more deeply into the math-
ematics. At the end of this chapter, we summarize a method for sliding semilandmarks
based on the thin-plate spline.
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MODELING SHAPE CHANGE AS A DEFORMATION

A deformation is a smooth function that maps points in one form to corresponding
points in another form. Intuitively, smoothness means that the function goes on without
interruptions or abrupt changes. More precisely, it means that the function is continuously
differentiable (it can be differentiated, its first derivative can be differentiated, and so can
its second, and so forth). To be differentiable, a function must be continuous. For example,
the function Y5X3 is continuous, but the absolute value function Y5 jXj is not because it
has a sharp corner at X5 0 and so is not differentiable at that point. The Dirichelet func-
tion Y5 (1 when X is rational; 0 when X is irrational) is also not continuous � it is not dif-
ferentiable anywhere. To be continuous, it is not enough to have a first derivative, that
first derivative must also be a differentiable function. That deformations are continuously
differentiable is important, because it means that the function must extend between land-
marks � it cannot be defined only at certain discrete points and disappear in the regions
between them.

If a function blows up (becomes infinite or non-differentiable) between points, we can-
not use it to interpolate values between them. This is important because we are using the
thin-plate spline as an interpolation function, inferring what happens between landmarks
from data at given anatomical points. If it is unreasonable to interpolate, it is unreasonable
to use the thin-plate spline for that purpose. It is also unreasonable to interpolate between
far distant landmarks, just as it is unreasonable to extrapolate a linear regression far
beyond the range of the observed data. If our landmarks are far apart, we have too few
data to draw conclusions about what happens between them. For example, in Figure 5.2
we are assuming that the changes in regions between post-cranial landmarks can be
inferred from landmarks on the dorsal and ventral periphery. That assumption can be
questioned, because if we actually had more landmarks in that region we might find
abrupt changes � small regions where the grid dramatically compresses or expands. We
are simply assuming that no such localized changes occur.

Another case in which it would be inappropriate to think of shape change as a deforma-
tion is when there is change concentrated at a single landmark. That is equivalent to a
function with an abrupt change, which violates the assumption of continuity. Such discon-
tinuities can be detected as displacement of one shape coordinate against a background of
invariant points. That pattern may be rare, but one close to it has actually been found in
data (Myers et al., 1996). In that study, prairie deer mice (Peromyscus maniculatus bairdii)
fed different diets were found to have skulls that differ only in the location of the tips of
the incisors relative to the other skull landmarks. This is an extreme case of a Pinocchio
effect (as discussed in Chapter 3). Such highly local changes should be ruled out before
any deformation-based method is applied; if such highly localized change is found, it is
better to rely on shape coordinates.

There is one other case in which a deformation-based approach might be unwise;
when the interpolation spans a large amount of extra-organismal space � that is, when
it is interpolating the changes over regions of “tissue” outside the organism. This can
happen when landmarks are located at tips of long structures, or on structures that
extend far laterally. Normally this is not a serious problem because we can simply
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avoid interpreting the changes in regions between those landmarks, except to say (per-
haps) that the long bony structures are relatively elongated or reoriented more laterally.
However, this can be a problem when multiple landmarks are located at tips of long
structures and no other landmarks serve to pin down what is happening to the regions
between them. It is possible to analyze the changes in relative position and length of
those tips using shape coordinates, but it may not be wise to draw a grid interpolating
changes at those tips to regions between them � there is no organismal tissue there.

If we do not have one of the special cases described above � that is, if we do not have
evidence that some landmarks are largely independent of the others � then we can apply
an interpolation function to understand changes between landmarks. Because the interpo-
lation function is continuously differentiable, relative displacements of landmarks can be
used to calculate the displacement of any location on the organism. These inferred displa-
cements between landmarks can be illustrated using a variety of graphical styles;
Figure 5.2 demonstrates the one most often used, a deformed grid in the style of D’Arcy
Thompson (1992).

THE PHYSICAL METAPHOR

The mathematical basis for drawing the picture of the deformed grid is a metaphor �
the bending of an idealized steel plate (Bookstein, 1989). According to this metaphor, dis-
placements of landmarks in the X, Y plane (the plane in which we have drawn them in
Figure 5.1) are visualized as if they were transferred to the Z-coordinate of an infinite, uni-
form and infinitely thin steel plate. That is, instead of depicting a landmark as displaced
in some direction within the plane of this page, it is visualized as if it were displaced in
the third dimension (out of this page).

The metal plate is constrained by little stalks that weld the landmarks in one shape to
the landmarks in the other. This is difficult to draw because the imagery is inherently
three-dimensional, so imagine two plates and place a configuration of landmarks on each.
Now, put one plate above the other, and construct little stalks that attach a landmark on
one plate to its homologue on the other plate. If a landmark in one shape is displaced a
long distance relative to the other landmarks, construct a long stalk. Thus, when the land-
mark is displaced a long distance in one direction (such as far anteriorly), the stalk is long;
conversely, when displaced only a short distance, the stalk is short. Therefore the stalks
are of uneven lengths, and that unevenness means that one plate cannot be flat. The con-
formation that plate takes is determined by the relative heights of the stalks, and by the
distances between them on the plate.

In some cases, the plate simply tilts or rotates (it does not actually bend); in other
cases the plate must actually bend, such as when a point in the middle is elevated
higher than four surrounding points. That bending may be gentle or quite sharp. For
real steel plates, the conformation of the plate tends to minimize the magnitude of
bending over the whole plate (as well as the physical energy required to produce
that bending). Here we use the expression tends to minimize the magnitude and
energy of bending, because real steel plates may have flaws, and the situation is not a
pure case of work against elasticity. In the ideal case, the bending energy depends
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solely on the distance between the points and the relative heights of the stalks, and
the total amplitude of bending. If we consider two different deformed plates, both
describing the same total overall amount of change (the same set of stalk heights) but
one with the stalks proportionately closer together, the one that is bent between the
more closely spaced points requires more energy than the one that is bent between
more widely spaced points.

The bending energy depends on the spacing of the stalks because it is a function of the
rate of change in the slope of the plate � i.e. whether the slope of the surface increases
rapidly or slowly. In these terms, more energy is required when the slope of the surface
changes at a higher rate (for the same net amplitude of change). Imagine a tall stalk sur-
rounded by short ones, which induces a steep slope in the curvature of the plate. The
steepness of that slope is proportional to the function being minimized � the rate of
change in slope of the surface � and, thus, the function being minimized is a function of
the second derivative (the slope of the surface is the first derivative) integrated over the
whole surface of the plate. It can also be termed the integral of the quadratic variation
over the plate.

To return from ideal plates to the analysis of a deformation, we now project the changes
that were visualized as if in the Z-direction back into the X, Y plane (the plane of our land-
mark data). The idea of bending that had a physical meaning when we were talking about
changes in the Z-direction is now reinterpreted as “spatially local information”. This inter-
pretation may not be intuitively obvious, but consider what a relatively rapid increase in
slope means � that there are contrasting displacements of closely spaced points. When
closely spaced points change in opposite directions it requires more energy to bend the
plate between them; so there is an inverse relationship between the spatial scale of the
change and its metaphorical bending energy. Minimization of bending energy is equiva-
lent to minimization of spatially localized information.

It is always possible to envision changes as highly local by assuming that the plate flat-
tens out immediately after rising, then rises again just at the next stalk, then flattens again,
then rises again, etc. The argument against doing so is that this would be the most unpar-
simonious interpretation possible. By minimizing bending energy, we obtain a more parsi-
monious description of the change. We do not assume highly localized change unless the
data demand doing so.

Uniform and Non-Uniform Components of a Deformation

Some transformations require no bending energy at all; these are equivalent to tilting or
rotating the plate. These are often called affine or uniform transformations, meaning that
they leave parallel lines parallel. The terms “affine” and “uniform” are both used to
describe the same component of a deformation; “affine” is favored by mathematicians, but
“uniform” appears more often in the geometric morphometric literature. Consequently,
we will use “uniform” for this component and “non-uniform” for its complement. In our
example (see Figure 5.2), if the entire fish simply elongates relative to its depth without
any disproportionate lengthening of one region relative to another, it is a uniform elonga-
tion. Uniform elongation is equivalent to uniform narrowing, as should be recalled from
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our discussion of shape variables in previous chapters. Because it is uniform, meaning
that the same change occurs everywhere, we need only one descriptor for the change of
the whole organism. In contrast, the non-uniform or non-affine deformations (which involve
the metaphorical bending) have regionally differentiated effects.

A deformation can be broken down into uniform and non-uniform components, as in
Figure 5.3. Most real biological transformations will have both uniform and non-uniform
components. These components are computed separately, so we describe them separately
(first the uniform, then the non-uniform), but it is important to bear in mind that a com-
plete description, and an accurate illustration, requires specifying all the components.
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FIGURE 5.3 Ontogenetic change in body shape of S. gouldingi, depicting: (A) total deformation and its two
components; (B) uniform component; (C) non-uniform component.
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Uniform (Affine) Components

There are six distinct types of uniform deformations for landmarks in two dimen-
sions, and they are independent of each other (meaning that they are mutually orthogo-
nal). Figure 5.4 shows these six operations carried out on a square configuration of
landmarks. The first four are the familiar ones that do not alter shape: translation along
two perpendicular axes (Figure 5.4A,B), scaling (Figure 5.4C) and rotation (Figure 5.4D).
These are all used in superimposing shapes. The other two uniform deformations do
alter shape: compression/dilation (Figure 5.4E) and shear (Figure 5.4F). Compression/
dilation refers to the case in which one direction has expanded (the vertical or
Y-direction in Figure 5.4E) while the other has contracted (the horizontal or X-direction).
Shearing refers to translating landmarks along one axis by a distance proportional to
their location along the other axis.

(A)

(D) (E) (F)

(B) (C)

FIGURE 5.4 The six uniform (affine) transformations: (A) translation along the vertical axis; (B) translation
along the horizontal axis; (C) scaling; (D) rotation; (E) compression/dilation; (F) shearing. The original (or refer-
ence) square is shown with dotted lines, while the deformed shape is shown with solid lines.
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Because compression/dilation and shear alter shape whereas translation, rotation and
scaling do not, it is common to talk about the two that alter shape without mentioning the
ones that do not. All of them need to be accounted for, so we will refer to compression/
dilation and shear as the explicit uniform deformations or explicit uniform terms because they
are the ones explicitly tracked. We will refer to the others as the implicit uniform deforma-
tions or implicit uniform terms. They are implicit because they can be mathematically deter-
mined from the superimposition method used, the explicit uniform components, and the
non-uniform components of a deformation � they are the translation, rotation and scaling
that must have been carried out. Both explicit and implicit uniform terms are needed, in
addition to the non-uniform terms, to draw the deformation correctly.

Each deformation has an inverse. Applying the inverse of a deformation is equivalent
to traveling backwards along the path that was taken until we arrive back at the starting
point. We can think of the deformation in terms of a 2K-dimensional vector (i.e. two
dimensions per landmark). There would be a vector at each landmark indicating the direc-
tion in which that particular landmark will be mapped under the deformation (although
there are only 2K2 4 independent dimensions). In the inverse of the deformation, the
directions of the arrows would be reversed. The inverse of a translation is the same magni-
tude of translation in the opposite direction (negative X instead of positive X). Similarly,
we can represent rotation as an angular displacement so its inverse is a negative angular
displacement (counterclockwise instead of clockwise). Scaling is slightly different because
it involves multiplication (whereas translations and rotations could be treated as addi-
tions). Scaling is multiplication by a factor F; its inverse is multiplication by the inverse of
F (1/F). Unfortunately, the algebraic descriptions of the last two deformations and their
inverses are not quite as simple (as we will see below). Graphically, we can see that the
inverse of compression/dilation involves a reversal of which axis is compressed and
which is dilated, and that the inverse of a shear is a shear of the same amount along the
same axis in the opposite direction.

Several different approaches exist to calculating orthogonal axes to represent the two
uniform components of shape difference found in a data set. The first approach, as
developed by Bookstein (1996) is to determine the pattern of shape change at each land-
mark of the reference after the two operations of shear and compression/dilation, fol-
lowed by partial Procrustes superimposition. A derivation of this approach is shown in
the Appendix. The other approach is to use the thin-plate spline method described
below to partition the shape variation in the data into the affine (uniform) and non-
affine components (Rohlf and Slice, 1990; Rohlf and Bookstein, 2003). The affine portion
can then be subjected to a singular value decomposition (akin to a principal components
analysis) to develop two orthogonal basis vectors (in two dimensions) which span the
space of possible affine changes in shape. The uniform shape terms found via singular
value decomposition will be linear combinations of shear and compression/dilation.
The approach based on singular value decomposition is readily adapted to three-
dimensional data as well. The choice of whether to use the affine terms as per
Bookstein (1996) or based on singular value decomposition is not particularly important,
they are simply slightly different basis sets of the uniform terms. Since the terms should
not be interpreted independently of one another in any case, the choice between the
two is not noticeable in the final statistical analysis.
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Decomposing the Non-Uniform (Non-Affine) Component

The non-uniform part of a deformation differs from the uniform in that it does not leave
the sides of a square parallel. However, like the uniform part, the non-uniform can be
further decomposed into a set of orthogonal components. The decomposition of the non-
uniform deformation is based on the thin-plate spline interpolation function, and produces
components called partial warps. We first describe an intuitive introduction to partial
warps, then a more mathematical one.

AN INTUITIVE INTRODUCTION TO PARTIALWARPS

The non-uniform component describes changes that have a location and spatial extent
on the organism; they are not the same everywhere. They describe spatially graded phe-
nomena such as anteroposterior growth gradients, and more highly localized changes
such as the elongation of the snout relative to the eye. The notion of spatial scale is central
to the analysis, so we need an intuitive notion of spatial scale. In general (but imprecise)
terms, a change at small spatial scale is one confined to a small region of an organism.
To refine that idea, and develop a firmer grasp of the concept, we show several compo-
nents at progressively smaller spatial scales (Figure 5.5).

Figure 5.5A shows a component at large spatial scale that, while broadly distributed, is
not the same everywhere (so it is not uniform). The particular example shown in
Figure 5.5A is the elongation of the mid-body relative to the more cranial and caudal
regions. A more localized change, confined to the posterior region of the body, is shown
in Figure 5.5B � a shortening of the region between the dorsal and adipose fins relative to
the dorsal fin and caudal peduncle. Because more distant landmarks are not involved in
the change, it is more localized than the one shown in Figure 5.5A. Another localized
change is shown in Figure 5.5C, this time confined to the cranial region. This is a shorten-
ing of the postorbital region relative to the regions just anterior and posterior.

The components we have described above and depicted in Figure 5.5 are partial warps,
but to draw them we had to specify their orientation (we drew them as oriented along the
anteroposterior body axis). That orientation is not actually specified by the partial warps
themselves; rather, it is provided by a two-dimensional vector, the partial warp scores.
There is one two-dimensional vector per partial warp. These scores express the contribu-
tion that each partial warp makes to the total deformation. The scores have an X- and
Y-component, and indicate the direction of the partial warp. The idea of direction or orien-
tation should be familiar from previous chapters. In Figure 5.6 we show one partial warp
(that depicted in Figure 5.6B) multiplied by three different vectors. It may be easiest to see
the directions by looking at the orientation of the vectors at landmarks. Figure 5.6A shows
the partial warp oriented horizontally, which in our case corresponds to the X-direction,
so the coefficient of the X-component is large and that of the Y-component is negligible.
In contrast, Figure 5.6B shows the vector with a negligible X-component and a large
Y-component. Figure 5.6C shows the vector with X- and Y-components of equal magnitudes.

We have described partial warps one at a time, but a complete description (and
interpretation) requires combining them all. Taken separately, partial warps are purely
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geometric constructs � a function of the location and spacing of the landmarks of the ref-
erence form. They are obtained by a geometric decomposition of the landmarks of the ref-
erence form (as explained in detail in the next section). Although they provide a basis for
the tangent space, they cannot be interpreted except in these abstract terms � we cannot
say, for example, that one part of the change in the ontogeny of the fish is a shortening of
the region between dorsal and adipose fins relative to the dorsal fin and caudal peduncle.
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FIGURE 5.5 Three components of the non-uniform
deformation, called partial warps. (A) Partial warp at large
spatial scale, depicting an expansion of the mid-body rela-
tive to the head and caudal body; (B) partial warp at moder-
ate to small spatial scale, depicting a contraction of the
region between dorsal and adipose fins relative to the
length of the dorsal fin and caudal peduncle; (C) another
partial warp at moderate to small spatial scale, depicting a
shortening of the postorbital region relative to the preorbital
head and anterior post-cranial body.
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FIGURE 5.6 One partial warp, oriented in three directions. (A) Along the X-axis; (B) along the Y-axis; (C)
equally along X- and Y-axes. Due to the orientation of our landmark coordinates, the X-direction corresponds to
the anteroposterior axis, and the Y-direction corresponds to the dorsoventral axis. To make it easier to see the
direction in which the partial warps are oriented, we also display them by vectors of relative landmark
displacements.
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That is a component of the deformation, not a component of an ontogeny. Only by looking
at the total deformation can we say where change occurs.

To summarize our intuitive presentation of spatial scale, we repeat our major points.
First, any non-uniform deformation can be decomposed into a series of components (partial
warps) at progressively smaller spatial scales. Each component describes a pattern of rela-
tive landmark displacements, based on the spacing and location of landmarks in the refer-
ence form. Each partial warp is multiplied by a two-dimensional vector (the partial warp
scores) that measures the contribution made by the partial warp (in each direction) to the
total deformation. We now present a more technical introduction to the thin-plate spline.

AN ALGEBRAIC INTRODUCTION TO PARTIALWARPS

Algebraically, partial warps are obtained by eigenanalysis of the bending energy matrix.
Eigenanalysis may be familiar from a quite different context, for example, principal com-
ponents analysis, where it is used to extract eigenvectors (PCs) of the variance�covariance
matrix of measurements. The exact same mathematics is involved in calculating the partial
warps; the difference lies in the matrix being analyzed. Rather than extracting eigenvectors
of a variance�covariance matrix, we instead extract them from the bending-energy matrix.
(We will discuss eigenanalysis further, in context of principal components analysis in
Chapter 6; here we focus on the derivation of the bending energy matrix.)

The idea behind the thin-plate spline is that it will approximate the observed deformation
by a linear combination of a function that is the smoothest available and that fully describes
the observed deformation. The function satisfying that pair of requirements has the form:

ZðX;YÞ52UðRÞ52R2 ln R2 (5.1)

where R is the distance between a pair of landmarks in the reference configuration (scaled
to unit centroid size). This particular function satisfies the biharmonic equation:

Δ2U5
d2

dx2
1

d2

dy2

 !2

U ðRÞ~ δð0;0Þ (5.2)

where δ(0,0) is the generalized function, or delta function, which is defined to be zero
everywhere except at X5 0, Y5 0, with the seemingly odd requirement that:ð

ðδð0;0Þdx dyÞ5 1 (5.3)

The delta function is oddly behaved, but mathematically tremendously useful, as it has
useful normalization properties. It is sometimes called a functional, rather than a function.

U is said to be the fundamental solution of the biharmonic equation, which is the equa-
tion for the shape of a thin steel plate lifted to a height Z (X, Y) above the (X, Y)-plane.
This is because the bending energy (BE) of the steel plate at a point (X, Y) is given by:

d2U

dx2

 !2

1 2
d2U

dx dy

 !2

1
d2U

dy2

 !2

52BEðX;YÞ (5.4)
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and the total bending energy of the entire plate is:

ð
ðBEðX; YÞdx dyÞ (5.5)

which is the bending energy at each point integrated over the entire surface. The choice of
U (R) minimizes this total bending energy.

For biological purposes, we do not really care about the bending energy of a steel plate.
Rather, we care about the connection between bending energy and the curvature of the
plate (and their connection to spatial scale). Minimizing bending energy minimizes the
curvature of the plate, so when we fit a linear combination of the U (R) function to our
data, we are fitting a function that minimizes the amount of curvature needed to model
the observed deformations.

Suppose we want a linear combination of U (R) values, centered on each of the K land-
marks of our reference form (because we are describing a deformation, we are talking
about changes relative to a reference). We need to describe deformations in the X and Y
directions, so we form the following linear combinations:

fxðX; YÞ5AX1 1AXXX1AXYY1
XK

i51

WXiUðX2Xi; Y2YiÞ (5.6)

fYðX; YÞ5AY1 1AYXX1AYYY1
XK

i51

WYiUðX2Xi; Y2YiÞ (5.7)

where fX (X, Y) and fY (X, Y) are the spline functions that describe the deformations along
the X- and Y-directions relative to the reference form, and WXi and WYi are weights of the
functions U (X2Xi, Y2Yi), centered on the landmark locations of the reference (Xi, Yi).
The A terms describe uniform (or affine) deformations of the target, using what is known
as the six-component uniform model. We need to include those A terms at this stage, but
will discard them later in favor of the two uniform components discussed in the
Appendix (Equations 5A.23 and 5A.38).

Fitting the functions to the observed deformations is a standard problem in systems of
linear equations; we can thus cast the problem into matrix form. We form a (K1 3)3 2
matrix V of the observed deformations at each of the K landmarks, where the deformation
at the ith landmark is denoted (X0

i, Y
0
i):

V5

X0
1 Y0

1

X0
2 Y0

2

^ ^
X0

K Y0
K

0 0

0 0

0 0

2
66666666664

3
77777777775

5

fXðX1; Y1Þ fYðX1; Y1Þ
fXðX2; Y2Þ fYðX2; Y2Þ

^ ^
fXðXK;YKÞ fYðXK;YKÞ

0 0

0 0

0 0

2
66666666664

3
77777777775

5LW (5.8)
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where LW is the product of two matrices L and W. L is the (K1 3) (K1 3) matrix:

L5

Uð0Þ UðR1;2Þ UðR1;3Þ ? UðR1;KÞ 1 X1 Y1

UðR2;1Þ Uð0Þ UðR2;3Þ ? UðR2;KÞ 1 X2 Y2

UðR3;1Þ UðR3;2Þ Uð0Þ ? UðR3;KÞ 1 X3 Y3

^ ^ ^ & ^ ^ ^ ^
UðRK;1Þ UðRK;2Þ UðRK;3Þ ? UðRK;KÞ 1 XK XK

1 1 1 ? 1 0 0 0
X1 X1 X3 ? XK 0 0 0
Y1 Y2 Y3 ? YK 0 0 0

2
66666666664

3
77777777775

(5.9)

in which U(R) is the function appearing in Equations 5.6 and 5.7 evaluated at each land-
mark location (Xi, Yi). W is the (K1 3)3 2 matrix of weights and uniform terms appearing
in Equations 5.6 and 5.7:

W5

WX1 WY1

WX2 WY2

^ ^
WXK WYK

AX1 AY1

AXX AYX

AXY AYY

2
666666664

3
777777775

(5.10)

So we have the equation:

V5LW (5.11)

in which L and W are the matrices just described. We wish to solve for W, the matrix of
coefficients in our spline model, which gives us:

W5L21V (5.12)

We can use the weights in the matrix W in conjunction with the spline functions in Equations
5.6 and 5.7 to interpolate the observed deformation at the landmarks over the entire specimen.
However, it turns out that we can make some further use of the matrix L21. This matrix is
(K1 3) by (K1 3); if we take the first K rows and the first K columns of L21, we can form L21

K ;
which is called the bending energy matrix.

The bending energy matrix can be rearranged into a series of eigenvectors Ei, and eigen-
values, λi, such that:

L21
K Ei 5λiEi (5.13)

The eigenvectors Ei have the usual properties of eigenvectors and, consequently, they are
a basis (or a set of coordinate axes) of a space. In this case, the eigenvectors are the basis
of the Euclidean space tangent to shape space at the reference shape. This means that we
can express the non-affine part of our matrix of observed deformations V as a linear com-
bination of the eigenvectors of the bending energy matrix. The eigenvalues are the bending
energies required to effect a change (of a given amount of shape difference, i.e. a unit of
Procrustes distance) at that spatial scale.
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Three of the eigenvalues of the bending energy matrix are zero, corresponding to the
components with no bending (with X- and Y-coefficients, these eigenvectors account for
the six uniform components of the deformation). The remaining K2 3 eigenvectors are the
explicitly localized components of a deformation. These eigenvectors are called the partial
warps; the vector multipliers of the partial warps are called the partial warp scores (follow-
ing Slice et al., 1996). They are “partial” because they describe part of a deformation. We
should note that Bookstein (1991) called the eigenvectors of the bending energy matrix
principal warps, analogous to principal components. By “partial warp”, he meant the vec-
tor multiple of a principal warp. Slice and colleagues use the term principal warp to refer to
a partial warp interpreted as a bent surface of the thin-plate spline, and because the latter
terminology has become standard, we use it here.

As evident in the definition of L21
K ; only one matrix of landmarks enters into the calcula-

tion of bending energy; the coordinates of the form usually called the reference or starting
form. Thus, the eigenvectors that give us a coordinate system for shape analyses are a
function of one single form. This may be highly counterintuitive, because more familiar
eigenvectors, such as principal components, are functions of an observed variance�
covariance matrix. They are functions of variation (or differences) among observed forms.
That is not the case for the eigenvectors of the bending energy matrix. The eigenvalues of
the bending energy are the bending energies that would be required to modify a given
shape by a single unit of shape difference at each spatial scale. Thus, the partial warps are
not themselves features of shape change, they are simply a coordinate system or basis for
the space in which we analyze shape change.

The “A” coefficients in Equation 5.10 describe the uniform deformation of the shape.
There are six of these coefficients, which is enough to describe the six components of the
uniform deformation of shape. However, we know that the reference and the target do
not differ by rotation, rescaling or translation, because those differences were removed by
the superimposition process. Consequently, we do not need six parameters to describe the
uniform component of the deformation, only the two components derived in the
Appendix.

By convention, partial (or principal) warps are numbered from the lowest to highest
bending energy; the one with the highest number corresponds to the one with greatest bend-
ing energy. The two uniform components are sometimes called the zeroth principal warp.
Thinking of the uniform components in those terms is useful because it emphasizes that the
uniform components cannot be viewed separately from the non-uniform ones. Including the
uniform terms also completes the tally of shape variables. The K2 3 partial warps contribute
2K2 6 scores; adding the two uniform scores brings the count up to 2K2 4.

DECOMPOSING THE DEFORMATION OF THREE-DIMENSIONAL
DATA

As in the two-dimensional case, the difference between three-dimensional configura-
tions of landmarks can be described as a deformation of one shape (reference) into the
other (target). This deformation can be decomposed into uniform and non-uniform parts
(or affine and non-affine). The non-uniform part can be further decomposed into 3(K2 4)
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independent components. The uniform part can be further decomposed into twelve inde-
pendent components; but only five of these change shape.

The numbers of uniform and non-uniform components can be explained if we consider
the possible deformations of the simplest three-dimensional shape, a tetrahedron of four
landmarks. All deformations of a tetrahedron, like all deformations of a triangle, must be
uniform; only when a fifth point is added can we detect non-uniform transformations (i.e.
transformations that differ between regions of the tetrahedron). With just four landmarks
a deformation can have twelve components, all of them uniform. Seven of the uniform
components do not change shape � they are the ones removed by superimposition �
which leaves five uniform components that do change shape. With each additional land-
mark beyond the fourth, there are three possible non-uniform components of deformation
(because there are three directions in which that point might move relative to the others),
hence 3(K2 4).

The components of the non-uniform part of a three-dimensional deformation are
defined in nearly the same terms as the components of the non-uniform part of a two-
dimensional deformation. Again, we use the thin-plate spline model to describe the defor-
mation at any point in space as fX, fY and fZ, which describe the X-, Y- and Z-components
of the deformation:

fXðX; Y; ZÞ5AX1 1AXXX1AXYY1AXZZ1
XK

i51

WXiUðX2Xi; Y2Yi; Z2ZiÞ

fYðX; Y; ZÞ5AY1 1AYXX1AYYY1AYZZ1
XK

i51

WYiUðX2Xi; Y2Yi; Z2ZiÞ

fZðX; Y; ZÞ5AZ1 1AZXX1AZYY1AZZZ1
XK

i51

WZiUðX2Xi; Y2Yi; Z2ZiÞ

(5.14)

where U(X2Xi, Y2Yi, Z2Zi) is a function of the interlandmark distances given by:

Ri 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX2XiÞ2 1 ðY2YiÞ2 1 ðZ2ZiÞ2

q
(5.15)

Again, we have more columns to accommodate the third dimension. The more substan-
tive difference is that U5 jRj in contrast to the two-dimensional case in which U5R2 ln
R2. As in the two-dimensional case, the next steps are to solve for the spline coefficients
(the values of A and W) and the eigenvectors of the bending energy matrix (the partial
warps).

In both the two-dimensional and three-dimensional cases, the thin-plate spline is
only used to solve for the non-uniform components of the deformation; a different
approach is taken to solve for the uniform components. Bookstein (1996) shows that
the approach he developed to construct a pair of basis vectors for the uniform part of
a two-dimensional deformation can be extended to the three-dimensional case. This
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approach yields three pairs of vectors describing shear and compression/dilation in
each of the three two-dimensional planes (XY, YZ and XZ). But remember, there are
only five possible shape variables for the uniform part; therefore, the six vectors are
not all completely independent. In fact, the problem lies in the three compression/
dilation vectors; these three vectors actually describe a two-dimensional space.
Bookstein suggests several methods to rectify this problem by constructing an ortho-
normal basis for this subspace (the current IMP software uses the Gram-Schmidt tech-
nique (following Axler, 1996)). These two vectors, combined with the three shear
vectors, provide an orthonormal basis for the entire uniform subspace. More recently,
Rohlf and Bookstein (Rohlf and Bookstein, 2003) have presented two other methods,
both using an SVD to compute an orthonormal basis for the entire uniform subspace
(without dividing it into shear and compression/dilation subspaces). The methods dif-
fer in how they extract the uniform variation from the total variation. In one, a tech-
nique used to compute residuals from a regression is used to compute the uniform
component as the residuals from the non-uniform (as the difference between the total
deformation and the non-uniform part). In the other, a technique used by Rohlf and
Slice (1990) to compute the uniform component directly from superimposed two-
dimensional coordinates is extended to three-dimensional coordinates. The new
methods differ from that proposed by Bookstein (1996) only in the simplicity of the
algorithms; all lead to the same conclusions regarding the differences among popula-
tions of shapes.

The result of the completed decomposition (of both uniform and non-uniform compo-
nents) is an orthonormal basis for the Euclidean space that is tangent to the shape space at
the location of the reference shape. Every configuration of landmarks in a data set can be
described as a deformation of the reference shape; and that deformation is represented by
the full set of scores on the five uniform components and 3(K2 4) non-uniform compo-
nents. These scores preserve Procrustes distances and express shape differences as scores
on the same number of orthogonal axes as there are dimensions of the shape space (which
is equal to the number of statistical degrees of freedom). Consequently, these scores can be
used in standard multivariate analyses, assuming that there are no semilandmarks with
their reduced dimensionality.

USING THE THIN-PLATE SPLINE TO VISUALIZE SHAPE CHANGE

The combination of the uniform and non-uniform components completely describes
any shape change. The set of partial warp scores (including scores on the uniform compo-
nent) can be used in any conventional statistical analysis and, like the coordinates obtained
by GLS, the sum of their squares equals the squared Procrustes distance from the refer-
ence. Moreover, like Bookstein’s shape coordinates, they have the correct degrees of free-
dom. Thus, we can use partial warps in any statistical procedure, such as regression, and
diagram the results as a deformation.
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Interpreting Changes Depicted by the Thin-Plate Spline

Interpretations should be presented in terms of the total deformation, not by detailing
the separate uniform and non-uniform components (or the more finely subdivided compo-
nents of them). Just as we cannot talk about individual landmarks as if they were sepa-
rately moved, we cannot talk about components of the total deformation as if they were
separate parts of the whole. It is important to remember that the changes depicted are
based on an interpolation function � we do not actually know what occurs between land-
marks, and while the thin-plate spline is a smooth interpolation function, and widely
used, other interpolation functions are also available. If we have sparsely sampled some
regions of the body, we cannot assume that the spline provides a realistic picture of their
changes; there might be many highly localized changes that cannot be detected in the
absence of closely spaced landmarks. All we can say is that our data do not require any
more localized changes.

We cannot show an example of a biological transformation depicted by the thin-plate
spline until we have results to show, so we will borrow examples from later chapters to
discuss the description of shape change using the thin-plate spline. In Figure 5.7 we depict
the ontogenetic changes in body shape of two species of piranhas: S. gouldingi
(Figure 5.7A), which we used earlier in this chapter, and Pygopristis denticulata
(Figure 5.7B). In both species, the head (as a whole) grows less rapidly than the middle of
the body, and the eye grows far more slowly than the head. In neither species does the

3

2

14
15

11

16

10

(A) (B)

9

8
7

6

13

12

1

4

5

FIGURE 5.7 Ontogenetic shape change for two species of piranhas: (A) Serrasalmus gouldingi; (B) Pygopristis
denticulata.
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shortening of the eye result solely from the generally lower cranial growth rates; rather,
there is an abrupt (and localized) deceleration of growth rates in the orbital region.
However, that does not, by itself, fully account for the apparent contraction of the grid in
the head, especially in S. gouldingi. Part of the relative shortening of the head, supraorbi-
tally, results from the displacement of the landmark at the epiphyseal bar (landmark 2)
towards the anterior landmark of the eye (landmark 14). Suborbitally, the apparent short-
ening of the head results from the displacement of the posterior jaw landmark (landmark
13) towards the posterior eye landmark (landmark 15), as well as from the more general
shortening of the snout and eye. These two species also differ in the ontogeny of posterior
body shape. In S. gouldingi, the caudal peduncle (the region bounded by landmarks 6, 7,
and 8) appears to contract, but no change appears to be localized there � the posterior
body generally shortens (as does the head). Growth rates appear to decrease, moving pos-
teriorly from the mid-body to the tail. Because the caudal peduncle is the most posterior
part of the body, the growth rates are lowest there. In P. denticulata, growth rates decrease
more slowly, and most of the change in the posterior body seems to result from the poste-
rior displacement (and relative shortening) of the anal fin. That increases the distance
between the pelvic and anal fins (which expands the grid between them), but because that
is not a part of the general expansion of the mid-body (it is limited to the ventral region
between the fins), the change is ventrally localized. Due to the sparse sampling of land-
marks in the middle of the body, there is no abrupt contraction or expansion of the grid
such as we see in the head. Sparse sampling of that region makes it difficult to detect
localized changes because we cannot show what happens between landmarks when we
have not sampled them (quoting Gertrude Stein, “there is no there there”).

USING BENDING ENERGY TO SUPERIMPOSE SEMILANDMARKS

In the earlier discussion of semilandmarks, we discussed how semilandmarks could be
“slid” along curves to minimize the perpendicular distance between the specimens, and
thus the Procrustes distance between the specimens. This was a distance minimizing
approach, but it is also possible to use the thin-plate spline to slide landmarks to produce
an optimally smooth (non-localized) difference between semilandmarks on two specimens.
In this approach, developed by Green (1996) and Bookstein (1997), the first step is a con-
ventional Procrustes superimposition (treating landmarks and semilandmarks as equiva-
lent) to compute a mean configuration and align the targets to it. This is followed by
moving the semilandmarks of each target to minimize the bending energy of the thin-plate
spline describing the deformation of the reference to that target. The semilandmarks
are not free to move in any direction; each is confined to “slide” along the line tangent to
the curve at that semilandmark (Figure 5.8). The shape of the curve is not actually known,
so the tangent is estimated as the line parallel to the segment connecting adjacent land-
marks or semilandmarks (Figure 5.9). After sliding, the superimposition is recomputed; if
the new mean configuration differs from the previous mean, the sliding and superimposi-
tion are reiterated until they converge on a solution. The justification for this sliding tech-
nique is that differences in relative positions of semilandmarks along the curve cannot be
informative because this spacing was defined arbitrarily (i.e. extrinsically). Thus, sliding to
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FIGURE 5.8 Semilandmarks on the edge of the squirrel scapula are
constrained to slide along tangents to that curve in the reference.
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minimize the bending energy of the deformation adjusts the spacing of the semilandmarks
to minimize the implication that there are shape changes due to differences in that
spacing.

Figure 5.10A shows the same data set used earlier, superimposed after sliding to
minimize bending energy. Several semilandmarks have ellipses of variation that imply
displacements along the anterior edge, particularly the ones in the ventral half. PC1
indicates that these semilandmarks undergo correlated displacements toward the dor-
sal end as the anterodorsal corner is squared out (Figure 5.10B). Thus, there is little
change in the positions of these semilandmarks relative to each other, and therefore little
localized change along the anterior edge. Most of the localized change in the anterior
edge occurs at the corner. As before, the change in shape of the anterior edge is
inferred to be the dominant component of shape change. Displacements of the land-
marks are generally slight; the exceptions are the ventral displacements of the most
dorsal landmarks, which are involved in the general flattening of the dorsal edge and
squaring of the anterodorsal corner.

The principal disadvantage of this approach is that the semilandmarks are in new posi-
tions relative to the landmarks and the other semilandmarks. However, this may not be
the devastating flaw that it seems to be. The underlying premise of sliding is that semi-
landmarks are not equal to landmarks. As pointed out above, semilandmarks do not rep-
resent the same amount of independent information as landmarks because semilandmarks
are constrained to lie along the curve at arbitrary intervals. Put another way, if moving
semilandmarks does not alter the information about the shape of the curve, then the con-
figuration of landmarks and semilandmarks after sliding might be considered to have the
same shape as the configuration before sliding.

(A) (B)

FIGURE 5.10 (A) Scapular
landmarks superimposed after
sliding to minimize bending
energy. Several semiland-
marks have ellipses of varia-
tion that imply displacements
along the anterior edge, partic-
ularly the ones in the ventral
half. (B) PC1 showing coordi-
nated displacements toward
the dorsal end.
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The semilandmark method based on bending energy produces smooth differences
between curves on different specimens, the distance minimizing method produces speci-
mens with the minimum possible distance between them. There is no clear consensus at
this point about which approach is preferable. However, it does appear that the distance
minimizing approach will often be more statistically conservative. If we want to show that
the mean shape of two groups is different, then the distance minimizing alignment would
produce specimens at the minimum possible distance, effectively biasing a statistical test
against finding any differences. So, if there is enough difference remaining in the two
groups to reject the null hypothesis despite the possible bias of the alignment procedure,
one can be reasonably sure the differences in mean shape are not an artifact of the align-
ment procedure. Any possible bias in the distance biased alignment is certainly against the
result we want to show. Bending energy alignment does produce smoother looking differ-
ences, but also appears to increase the variance within the data (Sheets et al., 2004, 2006).

APPENDIX

Calculating the Shear and Compression/Dilation Terms

Here we present the mathematical derivation of formulae for calculating the uniform
components of a deformation that changes shape. Unlike the formulae for computing the
non-uniform part of a shape change, which have been stable over the last decade, the for-
mulae for computing the uniform part have changed repeatedly. Over the last several
years, the uniform component has been computed using the formulae presented by
Bookstein (1996). The ones based on the Procrustes distance are the ones we present here.
We begin with a conceptual framework for Bookstein’s derivation of the current formulae;
then follow that with the full mathematical details.

Conceptual Framework

The goal of this derivation is to find a unit vector that describes the direction of defor-
mation at each landmark due to shearing or compression/dilation, followed by a
Procrustes generalized least squares (GLS) superimposition of the deformed shape back
onto the original (undeformed) one. This represents what we measure in data: a deforma-
tion followed by a superimposition operation. Thus, both mappings must be taken into
account. When we are done, we will have a set of unit vectors that describe the deforma-
tion under shearing or under compression/dilation. We can then take the dot product of
the observed deformation with the unit vectors to obtain the component of the observed
deformation lying along the shear or compression/dilation vectors. These are what we
have been calling the explicit uniform components of the deformation.

Notice that we are taking a verbal description of the situation, turning the verbal state-
ment into two mathematical operations or mappings (shear or compression/dilation, fol-
lowed by the superimposition), then using those mappings to determine the direction of
the vectors describing the deformation. That allows us to calculate components of any
deformation along those desired directions. What might not be obvious yet is that vectors
describing the uniform deformations depend on only one form � the one that we are
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modeling as deformed, which we will call the reference form (the other is the target). This
terminology should be familiar � the reference form is the same one that we discussed in
Chapter 3. If you do not wish to read further, you do not need to. You can return directly
to the section on decomposing the non-uniform (non-affine) component.

Although we now have a general idea of the procedure, there are still a few ideas that
need to be added. The first is the idea of complex number notation for landmark locations,
which is often used in mathematical derivations (see Dryden and Mardia, 1998, for exam-
ple). Consider a landmark configuration consisting of K landmarks in two dimensions,
which we will call Z, the reference form. Mathematically, we will say:

Z5 fZj;Zj5ðXj;YjÞgKj51
(5A.1)

which means that Z is a set of K pairs of landmark positions Zj, or (Xj, Yj). It is a useful
mathematical shortcut to think of Zj as being a complex number Zj5Xj1 iYj, where i is
the square root of minus one. Complex number notation is often used in texts on the statis-
tics of shape, so understanding this approach is useful.

The next idea is to require that the reference form be rotated to a principal axis align-
ment, so that Σj Xj Yj5 0, which will later simplify the mathematics (but may pose pro-
blems for aligning specimens in some software, discussed below). The summation Σj is
from j5 1 to j5K, and all the summations in the derivation are likewise over all K land-
marks. We are also going to assume that the reference has a centroid size of one, so that Σj

ðX2
j 1Y2

j Þ5 1; and a centroid position of (0, 0), so that Σj Xj5 0 and Σj Yj5 0.

Mathematical Derivations

Let us consider the two functions of interest: shear, which we will call S1(λ), and com-
pression/dilation, which we will call S2(λ) (λ describes the magnitude of the mapping).
We will be taking the limit as λ-0 at the end of this derivation, so terms including λ2 will
be discarded. The mappings from a reference form Z to a target form Z0 under these
operations are as follows:

S1ðλÞ: Z-Z0;Z0 5 fZ0
j5ðXj1λYj; YjÞgKj51

(5A.2)

S2ðλÞ: Z-Z0;Z0 5 fZ0
j5ðXj;Yj1λYjÞgKj51

(5A.3)

You can probably convince yourself that S1 describes a shear; the X-coordinates of each
point are displaced a distance proportional to their Y-axis position relative to the centroid.
Similarly, you should be able to recognize that S2 describes an expansion of the landmarks
along the Y-axis. We do not need to worry about modeling the contraction along the X-
axis, even though it must also be occurring, because the Procrustes GLS superimposition
will take care of that by requiring that the centroid size be fixed at one.

If Z and Z0 are both centered (i.e. have a centroid position of zero), then the Procrustes
superimposition may be approximated as the multiplication of Z0 by the complex factor
Pz0, where:

PZ0 5
ZZ0

Z0Z0 (5A.4)
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and the expression Z0 refers to the complex conjugate of the complex vector Z0 representing
the landmark configuration after the compression/dilation. The Procrustes superimposition
of Z0 on Z is thus Pz0Z

0. To get the vectors that describe the uniform deformation, we just
subtract the starting position Z from Pz0Z

0 and then divide through by the magnitude of the
deformation λ, yielding (Pz0Z

0 2Z)/λ as the set of vectors describing the deformation.

Further Derivation of the Uniform Components

To find PZ0 for the S2(λ) mapping (compression/dilation), we note that the numerator
of Pz0 is:

ZZ0 5
X
j

ðXj 1 iYjÞ3 ðXj 2 iðYj 1λYjÞÞ (5A.5)

which expands to:

5
X
j

ðX2
j 2 iXjYj 2 iXjλYj 1 iXjYj 2 ðiYjÞ2 2 ðiYjÞ2λÞ (5A.6)

Because i2521 and the products of XjYj sum to zero (under the alignment specified
earlier), we can simplify this to:

5
X
j

ðX2
j 1Y2

j 1Y2
j λÞ (5A.7)

Now add the constraint that
P

jðX2
j 1Y2

j Þ5 1 because we scaled the reference to unit
centroid size, and we have:

ZZ0 5 11λ
X
j

Y2
j (5A.8)

Now we simplify the denominator of Pz0:

Z0Z0 5
X
j

ðXj 1 iYjð11λÞÞ3 ðXj 2 iYjð11λÞÞ (5A.9)

5
X
j

ðX2
j 1Y2

j ð11λÞ2Þ5
X
j

X2
j 1Y2

j ð11 2λ1λ2Þ (5A.10)

5
X
j

X2
j 1Y2

j 12Y2
j λ1Y2

j λ
2 (5A.11)

As mentioned before,
P

jðX2
j 1Y2

j Þ5 1; and terms including λ2 can be discarded in the
limit of small λ, so that:

Z0Z0D11 2λ
X
j

Y2
j (5A.12)

This leaves us with:

Pz0 5
ZZ0

Z0Z0 5
ð11λ

P
jY

2
j Þ

ð11 2λ
P

jY
2
j Þ

(5A.13)

1. BASICS OF SHAPE DATA

128 5. THE THIN-PLATE SPLINE: VISUALIZING SHAPE CHANGE AS A DEFORMATION



We can now expand the term 1=ð11 2λ
P

jY
2
j Þ as 12 2λ

P
jY

2
j ; keeping only first order

terms in λ for this power series expansion. This gives us:

Pz0 5
ZZ0

Z0Z0 D 11λ
X
j

Y2
j

0
@

1
A 12 2λ

X
j

Y2
j

0
@

1
AD12λ

X
j

Y2
j (5A.14)

to first order in λ.
Now we can calculate the landmark coordinates after the operation of the compres-

sion/dilation (S2(λ)) and Procrustes superimposition (which is just a multiplication by PZ0,
since Z0 is already centered):

Pz0Z0 5 12λ
X
j

Y2
j

0
@

1
A3Z0 5 Zj5 Xj 12λ

X
j

Y2
j

0
@

1
A

0
@

1
A; ðYj1λYjÞ 12λ

X
j

Y2
j

0
@

1
A

0
@

1
A

8<
:

9=
;

K

j51

(5A.15)

The vector describing the displacement from Z to Pz0Z
0 is then:

Pz0Z0 2Z5 Xj 12λ
X
j

Y2
j

0
@

1
A2Xj

0
@

1
A; ðYj1λYjÞ 12λ

X
j

Y2
j

0
@

1
A2Yj

0
@

1
A

0
@

1
A

8<
:

9=
;

K

j51

(5A.16)

5 2Xjλ
X
j

Y2
j

0
@

1
A; λYj2λYj

X
j

Y2
j 2λ2Yj

X
j

Y2
j

0
@

1
A

0
@

1
A

8<
:

9=
;

K

j51

(5A.17)

Noting that λ2D0; we can simplify this to:

5 2Xjλ
X
j

Y2
j

0
@

1
A; λYj2λYj

X
j

Y2
j

0
@

1
A

0
@

1
A

8<
:

9=
;

K

j51

(5A.18)

5λ Xj 2
X
j

Y2
j

0
@

1
A;Yj 12

X
j

Y2
j

0
@

1
A

0
@

1
A

8<
:

9=
;

K

j51

(5A.19)

We now define γ5Σj Y
2
j and α5 12Σj Y

2
j5Σj X

2
j , so that γ1α5 1. After making these

substitutions and dividing through by λ, we have:

V2 5
ðPz0 2Z0Þ

λ
5 fð2γXj;αYjÞgKj51

(5A.20)

which is the vector of the displacements at each landmark point (Xj, Yj) produced by the
mapping S2 per unit of λ. All we need to do now is to normalize this set so that the length
of the vector is one.
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The magnitude of this vector is:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j

ðγ2X2
j 1α2Y2

j Þ
s

(5A.21)

Using the definitions of α and γ to rearrange this and simplify it, we get:

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2
X
j

X2
j 1α2

X
j

Y2
j

s
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2α1α2γ

p
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αγðα1 γÞ

p
5

ffiffiffiffiffiffi
αγ

p
(5A.22)

So if we normalize V2, we get:

V0
2 5

V2ffiffiffiffiffiffi
αγ

p 5 2
γffiffiffiffiffiffi
αγ

p Xj;
αffiffiffiffiffiffi
αγ

p Yj

� �� �K

j51

(5A.23)

5 2

ffiffiffiffi
γ
α

r
Xj;

ffiffiffiffi
α
γ

r
Yj

� �� �K

j51

(5A.24)

which is now a unit vector describing a compression/dilation operation followed by
Procrustes superimposition.

Similarly, we start with a shearing operation, S1(λ), and corresponding Procrustes
superimposition, PZ0, to find the unit vector corresponding to these operations. First we
need to find PZ0 for the S1(λ) mapping:

ZZ0 5
X
j

ðXj 1 iYjÞ3 ðXj 1λYj 2 iYiÞ (5A.25)

5
X
j

ðX2
j 1Y2

j 1XjYjλ1 iY2
i λÞ (5A.26)

As before,
X
j

ðX2
j 1Y2

j Þ5 1;
X
j

XjYj 5 0 and
X
j

Y2
j 5 γ;

ZZ0 5 11 iγλ (5A.27)

Also:

Z0Z0 5
X
j

ðXj 1λYj 1 iYjÞ3 ðXj 1λYj 2 iYjÞ (5A.28)

X
j

ðXj1λYjÞ2 1Y2
j 5

X
j

ðX2
j 1 2λXjYj 1λ2Y2 1Y2

j Þ5 1 (5A.29)

Therefore:

Pz0 5
ZZ0

Z0Z0 5
ZZ0

1
5 11 iγλ (5A.30)
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Now we can simplify:

V1 5
Pz0Z0 2Z

λ
5

ð11 iγλÞðXj 1λYj 1 iYjÞ2 ðXj 1 iYjÞ
λ

(5A.31)

5
Xj 1λYj 1 iYj 1 iγλXj 1 iγλ2Yj 1 i2γλYj 2Xj 2 iYj

λ
(5A.32)

5
λYj 1 iγλXj 2 γλYj

λ
5Yj 1 iγXj 2 γYj (5A.33)

This leads to the series of coordinate pairs:

5 ðYjð12 γÞ; γXjÞ (5A.34)

or

V1 5 ðαYj; γXjÞ (5A.35)

The magnitude of this vector is:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j

ðα2Y2
j 1 γ2X2

j Þ
s

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2
X
j

Y2
j 1 γ2

X
j

X2
j

s
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2γ1 γ2α

p
(5A.36)

5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αγðα1 γÞ

p
5

ffiffiffiffiffiffi
αγ

p
(5A.37)

so the unit vector V0
1 obtained by normalizing V1 is:

V0
1 5

αY1ffiffiffiffiffiffiffi
αY

p ;
γXjffiffiffiffiffiffi
αγ

p
� �� �K

j51

5

ffiffiffiffi
α
γ

r
Yj;

ffiffiffiffi
γ
α

r
Xj

� �� �K

j51

(5A.38)

which may now be used to determine the shear component of the uniform deformation.
Some software packages will give you α and γ as used in the calculation of the uniform

component, others may give you the unit vectors instead. The expressions are for coordi-
nates of the unit vectors for shear and compression/dilation for a reference form rotated
to principal axis orientation. It turns out to be straightforward to rotate them to unit
vectors to match any reference orientation preferred by a researcher, although some pro-
grams may not offer this option, meaning that the reference may be oddly oriented by the
software.

Calculating Uniform Components Based on Other Superimpositions

The approach taken in the above derivation was to determine the unit vectors that
would result from a shear or compression/dilation of a reference form, followed by
Procrustes superimposition back onto the reference form. It is also possible to determine
the unit vectors produced by a shear or compression/dilation of a reference, followed by
sliding baseline registration (SBR) or a two-point registration that yields Bookstein coordi-
nates (BC). These unit vectors and specimens can then be used in SBR or BC to calculate
the uniform components of the deformation, just as we did with those in Procrustes
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superimposition. Estimates of the explicit uniform components under SBR are identical to
those derived from the Procrustes-based method presented here. This is not surprising,
since the Procrustes superimposition differs from SBR only in the implicit uniform defor-
mations (assuming that the Procrustes superimposition, like SBR, is performed with cen-
troid size set to one, two superimpositions differ only in the rotation and translation
terms). Thus, a deformation displayed by a Procrustes superimposition shows the same
change in shape as the deformation displayed by SBR � the differences between them are
due to the implicit deformations, and do not alter shape. Deformations shown by BC differ
from those in Procrustes superimposition in scale as well as rotation and translation, but
these are still implicit uniform terms. Likewise, RFTRA differs from the other superimposi-
tions only in the implicit uniform terms.
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C H A P T E R

6

Ordination Methods

In this chapter, we discuss two methods for describing the diversity of shapes in a sam-
ple: principal components analysis (PCA) and canonical variates analysis (CVA). Our dis-
cussion of these methods draws heavily on expositions presented by Morrison (1990),
Chatfield and Collins (1980) and Campbell and Atchley (1981). Both methods produce
ordinations that simplify descriptions, or provide tools for exploratory data analysis.
These ordinations are descriptions of the data, not tests of hypotheses. However, CVA
may also be used as multigroup discriminant function, in which the rate of correct assign-
ment of specimens to groups based on shape is used to support specific hypotheses related
to the ability to assign individuals to different species (Nolte and Sheets., 2005; Costa
et al., 2008; Van Bocxlaer and Schultheiß, 2010; Williams et al., 2012) or as a diagnostic tool
(Menesatti et al., 2008, Yee et al., 2009). PCA is a tool for simplifying descriptions of varia-
tion among individuals, whereas CVA is used for simplifying descriptions of differences
between groups. Both analyses produce new sets of variables that are linear combinations
of the original variables. They also produce scores for individuals on those variables, and
these can be plotted and used to inspect patterns visually. Because the scores order speci-
mens along the new variables, the methods are called “ordination methods”. It is hoped
that the ordering provides insight into patterns in the data, perhaps revealing patterns
that are convenient for addressing biological questions. The most important difference
between PCA and CVA is that PCA constructs variables that can be used to examine vari-
ation among individuals within a sample, whereas CVA constructs variables to describe
the relative positions of groups (or subsets of individuals) in the sample.

We discuss PCA and CVA in the same chapter because they serve a similar purpose,
and because the mathematical transformations performed in them are similar. We describe
PCA first because it is somewhat simpler, and because it provides a foundation for under-
standing the transformations performed in CVA and in other related methods. We begin
the description of PCA with some simple graphical examples, and then present a more for-
mal exposition of the mathematical mechanics of PCA. This is followed by a presentation
of an analysis of a real biological data set. The description of CVA follows a similar out-
line; the only difference is that we begin with a discussion of groups and grouping
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variables. CVA requires that the individuals be grouped, because the objective of the
method is to analyze the relative positions of those groups. Consequently, the sample
must be divided into groups before the analysis begins. The description of differences
between groups is optimized relative to the variation within those groups. That optimiza-
tion requires a few more computational steps than PCA, but none of the steps in CVA
introduce new mathematical concepts. CVA will be just a new application of ideas you
have already encountered in the discussion of PCA.

As we will see, optimization of between groups differences with respect to within
group variation has implications for the relative positions of group means and the dis-
tances between them, which are discussed in detail by Mitteroecker and Bookstein (2011).
In the third section, we discuss an alternative method suggested by them in which PCA is
used to analyze differences between group means without altering their positions or dis-
tance. This Between Groups PCA (BGPCA) may be more appropriate than CVA for some
particular exploratory applications.

PRINCIPAL COMPONENTS ANALYSIS

Geometric shape variables are neither biologically nor statistically independent.
For example, the shape variables produced by the thin-plate spline describe variation in
overlapping regions of an organism or structure. Because the regions overlap, they are
under the influence of the same processes that produce variation; and therefore we expect
them to be correlated. Even when they do not describe overlapping regions, morphometric
variables (both geometric and traditional) are expected to be correlated because they
describe features of the organism that are functionally, developmentally or genetically
linked. Their patterns of variation and covariation are often complex and difficult to inter-
pret. The purpose of PCA is to simplify those patterns and make them easier to interpret
by replacing the original variables with new ones (principal components, PCs) that are lin-
ear combinations of the original variables and independent of each other.

One might wonder why it would be a worthwhile exercise to take simple variables that
covary with each other and replace them with complex variables that do not covary. Part
of the value of this exercise arises from the fact that the new complex variable is a function
of the covariances among the original variables. It thus provides some insight into the cov-
ariances among variables, which can direct future research into the identity of the causal
factors underlying those covariances. Another useful purpose served by PCA is that most
of the variation in the sample usually can be described with only a few PCs. Again this is
useful, because it simplifies and clarifies what needs to be explained. Another important
benefit of PCA is that the presentation of results is simplified. It is much easier to produce
and explain plots of the three PCs that explain 90% of the variation than it is to plot sepa-
rately and explain the variation on each of 30 original variables.

An indirect benefit of PCA that is useful (but often misused) is that it simplifies the
description of differences among individuals. Clusters of individuals are often more
apparent in plots of PCs than in plots of the original variables. Finding such clusters can
be quite valuable, but those clusters do not represent evidence of statistically distinct
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entities. Legitimate methods for testing the hypothesis that a priori groups are statistically
significantly different will be presented in later chapters.

Geometric Description of PCA

Figure 6.1A shows the simple case in which there are two observed traits, X1 and X2.
These traits might be two distance measurements or the coordinates of a single landmark
in a two-dimensional shape analysis. Each point in the scatter plot represents the paired
values observed for a single specimen. We expect that the values of each trait are normally
distributed, and we expect that one trait is more variable than the other. In this case, X1

has a larger range of observed values and a higher variance than X2. In addition, the
values of X1 and X2 are not independent; higher values of one are associated with higher
values of the other. This distribution of values can be summarized by an ellipse that is
tilted in the X1, X2 coordinate plane (Figure 6.1B). PCA solves for the axes of this ellipse,
and uses those axes to describe the positions of individuals within that ellipse.

The first step of PCA is to find the direction through the scatter that describes the larg-
est proportion of the total variance. This direction, the long axis of the ellipse, is the first
principal component (PC1). In an idealized case like that shown in Figure 6.1A, the line
we seek is approximately the line through the two cases that have extreme values on both
variables. Real data rarely have such convenient distributions, so we need a criterion
that has more general utility. If we want to maximize the variance that the first axis
describes, then we also want to minimize the variance that it does not describe � in other
words, we want to minimize the sum of the squared distances of points away from the
line (Figure 6.1C). (Note: the distances that are minimized by PCA are not the distances
minimized in conventional least-squares regression analysis � see Chapter 8.)

The next step is to describe the variation that is not described by PC1. When there are
only two original variables, this is a trivial step; all of the variation that is not described by
the first axis of the ellipse is completely described by the second axis. So, let us consider
briefly the case in which there are three observed traits: X1, X2 and X3. This situation is
unlikely to arise in optimally superimposed landmark data, but it illustrates a generaliza-
tion that can be applied to more realistic situations. As in the previous example, all traits
are normally distributed and no trait is independent of the others. In addition, X1 has the
largest variance and X3 has the smallest variance. A three-dimensional model of this distri-
bution would look like a partially flattened blimp or watermelon (Figure 6.2A). Again PC1
is the direction in which the sample has the largest variance (the long axis of the water-
melon), but now a single line perpendicular to PC1 is not sufficient to describe the remain-
ing variance. If we cut the watermelon in half perpendicular to PC1, the cross-section is
another ellipse (Figure 6.2B). The individuals in the section (the seeds in the watermelon)
lie in various directions around the central point, which is where PC1 passes through the
section. Thus, the next step of the PCA is to describe the distribution of data points around
PC1, not just for the central cross-section, but also for the entire length of the watermelon.

To describe the variation that is not represented by PC1, we need to map, or project, all
of the points onto the central cross-section (Figure 6.2C). Imagine standing the halved
watermelon on the cut end and instantly vaporizing the pulp so that all of the seeds drop
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vertically onto a sheet of wax paper, then repeating the process with the other half of
the watermelon and the other side of the paper. The result of this mapping is a two-
dimensional elliptical distribution similar to the first example. This ellipse represents the
variance that is not described by PC1. Thus, the next step of the three-dimensional PCA is

X1

X
2

X1

X
2

X1

X
2

(A)

(B)

(C)

FIGURE 6.1 Graphical representation of the problem to
be solved by PCA. (A) Scatter plot of individuals scored on
two traits, X1 and X2; (B) an ellipse enclosing the scatter of
points shown in part (A); (C) a line through the scatter and
the perpendicular distances of the individuals from that
axis. The goal of PCA is to find the line that minimizes the
sum of those squared distances.
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the first step of the two-dimensional PCA � namely, solving for the long axis of a two-
dimensional ellipse, as outlined above. In the three-dimensional case, the long axis of the
two-dimensional ellipse will be PC2. The short axis of this ellipse will be PC3, and will
complete the description of the distribution of seeds in the watermelon. By logical exten-
sion, we can consider N variables measured on some set of individuals to represent an
N-dimensional ellipsoid. The PCs of this data set will be the N axes of the ellipsoid.

After the variation in the original variables has been redescribed in terms of the PCs,
we want to know the positions of the individual specimens relative to these new axes
(Figure 6.3). As shown in Figure 6.3A, the values we want are determined by the orthogo-
nal projections of the specimen onto the PCs. These new distances are called principal
component scores. Because the PCs intersect at the sample mean, the values of the scores
represent the distances of the specimen from the mean in the directions of the PCs.

X1

X1

X2

X2

X3

X3

(A)

(B)

(C)

FIGURE 6.2 Graphical representation of PCA on three original
variables (X1, X2, X3). (A) The distribution of individual specimens
on the three original axes is summarized by a three-dimensional
ellipsoid; (B) the three-dimensional ellipsoid is cut by a plane pass-
ing through the sample centroid and perpendicular to the longest
axis (PC1) at its midpoint, showing the distribution of individuals
around the longest axis in the plane of the section; (C) the upper
half of the ellipsoid in B has been rotated so that the cross-section
is in the horizontal plane. Perpendicular projections of all indivi-
duals (from both halves) onto this plane are used to solve for the
second and third PCs.
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In effect, we are rotating and translating the ellipse into a more convenient orientation so
we can use the PCs as the basis for a new coordinate system (Figure 6.3B). The PCs are the
axes of that system. All this does is allow us to view the data from a different perspective;
the positions of the data points relative to each other have not changed.

As suggested by Figure 6.4, we could compute an individual’s score on a PC from the
values of the original variables that were observed for that individual and the cosines of
the angles between the original variables and the PCs. In our simple two-dimensional
case, the new scores, Y, could be calculated as:

Y1 5A1X1 1A2X2 (6.1)

where A1 and A2 are the cosines of the angles α1 and α2 and the values of individuals on
X1 and X2 are the differences between them and the mean, not the observed values of
those variables.

It is important to bear in mind for our algebraic discussion that Equation 6.1 represents
a straight line in a two-dimensional space. Later we will see equations that are expansions
of this general form and represent straight lines in spaces of higher dimensionality. So, in
case the form of Equation 6.1 is unfamiliar, the next few equations illustrate the simple
conversion of this equation into a more familiar form. First, we rearrange the terms to
solve for X2:

Y1 2A1X1 5A2X2 (6.2)

(A) (B)
X1

X
2

PC2

PC1

S1
S2

X1

X2

S1

S2

PC2

PC1

FIGURE 6.3 Graphical interpretation of PC scores. (A) The star is the location of an individual in the sample.
Perpendiculars from the star to PCs indicate the location of the star with respect to those axes. The distances of
points S1 and S2 from the sample centroid (intersection of PC1 and PC2) are the scores of the star on PC1 and
PC2. (B) The figure in part A has been rotated so that PCs are aligned with the edges of the page. The PCs will
now be used as the reference axes of a new coordinate system; the scores on these axes are the location of the
individual in the new system. The relationships of the PC axes to the original axes has not changed, nor has the
position of the star relative to either set of axes.
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A2X2 52A1X1 1Y1 (6.3)

X2 5
2A1X1

A2
1

Y1

A2
(6.4)

Then we make two substitutions (M52A1/A2 and B5Y1/A2) to produce:

X2 5MX1 1B (6.5)

Thus, the formula for the PC is, indeed, the formula for a straight line.

Algebraic Description of PCA

We begin this description of PCA by repeating the starting conditions and the con-
straints we want to impose on the new variable. We have a set of observations of P traits
on N individuals, where P is the number of shape variables (not the number of land-
marks). The data comprise P variances and P(P2 1)/2 covariances in the sample. We want
to compute a new set of P variables (PCs) with variances that sum to the same total as that
computed from the variances and covariances of the original variables, and we also want
the covariances of all the PCs to be zero. In addition, we want PC1 to describe the largest
possible portion of variance, and we want each subsequent PC to describe the largest
possible portion of the variation that was not described by the preceding components.

The full set of observations can be written as the matrix X:

X5

X11 X12 X13 ? X1P

X21 X22 X23 ? X2P

X31 X32 X33 ? X3P

^ ^ ^ & ^
XN1 XN2 XN3 ? XNP

2
66664

3
77775

(6.6)

X1

X
2

PC2

PC1

α2

α1

S2

S1

FIGURE 6.4 Graphical interpretation of PC scores,
continued. The angles α1 and α2 indicate the relationship
of PC1 to the original axes X1 and X2. Thus, S1 can be com-
puted from the coordinates of the star on X1 and X2 and
the cosines of the angles between PC1 and the original
axes. S2 can be computed from the coordinates of the star
on X1 and X2 and the cosines of the angles between PC2
and the original axes.
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where XNP is the value of the Pth coordinate in the Nth individual. We can also think of
this as a P-dimensional space with N points plotted in that space � just a multidimen-
sional version of the simplistic examples presented in the previous section.

Our problem is to replace the original variables (X1, X2, X3, . . . XP), which are the columns
of the data matrix, with a new set of variables (Y1, Y2, Y3, . . . YP), the PCs that meet the con-
straints outlined in the first paragraph of this section. Each PC will be a straight line
through the original P-dimensional space, so we can write each Yj as a linear combination
of the original variables:

Yj 5A1jX1 1A2jX2 1?1APjXP (6.7)

which can be expressed in matrix notation as:

Yj 5AT
j X (6.8)

where AT
j is a vector of constants {A1j, A2j, A3j . . . APj}. (The notation AT

j refers to the trans-
pose, or row form, of the column matrix Aj.) All this means is that the new values of the
individuals, their PC scores, will be computed by multiplying their original values (listed
in matrix X) by the appropriate values of AT

j and summing the appropriate combinations
of multiples. Now we can see that our problem is to find the values of AT

j that satisfy the
constraints outlined above.

The first constraint we will address is the requirement that the total variance is not
changed. Variance is the sum of the squared distances of individuals from the mean, so
this is equivalent to requiring that distances in the new coordinate system are the same as
distances in the original coordinate system. The total variance of a sample is given by the
sample variance�covariance matrix S:

S5

s11 s12 s13 ? s1P
s21 s22 s23 ? s2P
s31 s32 s33 ? s3P
^ ^ ^ & ^
sP1 sP2 sP3 ? sPP

2
66664

3
77775

(6.9)

in which sii is the sample variance observed in variable Xi, and sij (which is equal to sji) is
the sample covariance observed in variables Xi and Xj.

We can meet the requirement that the total variance is unchanged by requiring
that each PC is a vector of length one. If we multiply matrix X by a vector of constants as
indicated in Equation 6.8, the variance of the resulting vector Yj will be:

VarðYjÞ5VarðAT
j XÞ5AT

j SAj (6.10)

Thus, the constraint that variance is unchanged can be formally stated as the require-
ment that the inner product or dot product of each vector AT

j with itself must be one:

AT
j Aj 5 15

Xp

k51

A2
kj (6.11)
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This means that the sum of the squared coefficients will be equal to one for each PC.
Substituting Equation 6.11 into Equation 6.10 yields Var(Yj)5S, demonstrating that the
constraint has been met.

The next constraint is the requirement that principal component axes have covariances
of zero. This means that the axes must be orthogonal. More formally stated, this constraint
is the requirement that the dot product of any two axes must be zero. For the first two
PCs, the constraint is expressed as:

AT
j A2 5 05

X
A1iA2i (6.12)

The general requirement that the products of corresponding coefficients must be zero
for any pair of PCs is expressed as:

AT
j Aj 5 0 (6.13)

The requirements imposed by Equations 6.11 and 6.13 indicate that we are solving for
an orthonormal basis. A basis is the smallest number of vectors necessary to describe a vec-
tor space (a matrix). An orthogonal basis is one in which each vector is orthogonal to every
other, so that a change in the value of one does not necessarily imply a change in the value
of another � in other words, all the variables are independent, or have zero covariance
(Equation 6.13) in an orthogonal basis. An orthonormal basis is an orthogonal basis in
which each axis has the same unit length. This very particular kind of normality was
imposed by the first requirement (Equation 6.11). In an orthonormal basis, a distance or
difference of one unit on one axis is equivalent to a difference of one unit on every other
axis; consecutive steps of one unit on any two axes would describe two sides of a square.

So far, we have defined important relationships among the values of AT
i : There is an

infinite number of possible orthonormal bases that we could construct to describe the orig-
inal data. The third constraint imposed above defines the relationship of the new basis
vectors to the original vector space of the data. Specifically, this constraint is the require-
ment that the variance of PC1 is maximized, and that the variance of each subsequent
component is maximized within the first two constraints.

We begin with the variance of PC1. From Equation 6.10 we know that:

VarðY1Þ5VarðAT
1XÞ5AT

1 SA1 (6.14)

The matrix S can be reduced to:

Λ5

λ1 0 0 ? 0
0 λ2 0 ? 0
0 0 λ3 ? 0
^ ^ ^ & ^
0 0 0 ? λp

2
66664

3
77775

(6.15)

where each λi is an eigenvalue, a number that is a solution of the characteristic equation:

S2λiI5 0 (6.16)
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In the characteristic equation, I is the P3P identity matrix:

I5

1 0 0 ? 0
0 1 0 ? 0
0 0 1 ? 0
^ ^ ^ & ^
0 0 0 ? 1

2
66664

3
77775

(6.17)

If each original variable in the data matrix X has a unique variance (cannot be replaced
by a linear combination of the other variables), then each λi has a unique value greater
than zero. Furthermore, the sum of the eigenvalues is equal to the total variation in the
original data.

For each eigenvalue, there is a corresponding vector Ai, called an eigenvector, such that:

SAi 5λiAi (6.18)

This must be true, because we have already required:

S� λiI5 0 (6.19)

Therefore:

ðS� λiIÞAi 5 0 (6.20)

which can be rearranged to:

SAi 5λiAi (6.21)

Thus, the eigenvectors are a new set of variables with variances equal to their eigenva-
lues and covariances equal to zero. Because the covariances are zero, the eigenvectors sat-
isfy the constraint of orthogonality. Eigenvectors usually do not meet the constraint of
normality ðAT

i Ai 5 1Þ; but this can be corrected simply by rescaling. Accordingly, the
rescaled eigenvectors are the PCs, which comprise an orthonormal basis for the variance�
covariance matrix S.

All that remains is to order the eigenvectors so that the eigenvalues are in sequence
from largest to smallest. We can now show that the variance of PC1 is the first and largest
eigenvalue. From Equation 6.10 we have VarðYjÞ5AT

j SAj; and from Equation 6.18 we
have SAi5λiAi. Putting these together, we get:

VarðY1Þ5AT
1λ1A1 (6.22)

We can rearrange this to:

VarðY1Þ5λ1A
T
1A1 (6.23)

which simplifies to λ1 because we have already imposed the constraint that ðAT
1Ai 5 1Þ:
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A Formal Proof That Principal Components are Eigenvectors of the
Variance�Covariance Matrix

This is the derivation as presented by Morrison (1990). Let us suppose that we have a
set of measures or coordinates X5 (X1, X2, X3 . . . XP), and we want to find the vector
A15 (A11, A21, A31 . . . AP1) such that:

Y1 5A11X1 1A21X2 1A31X3 1?1AP1XP (6.24)

We would like to maximize the variance of Y1:

s2Y1
5
XP

i51

XP

j51

Ai1Aj1sij (6.25)

where sij is the element on the ith row and jth column of the variance�covariance matrix
S of the observed specimens. We can write the variance of Y1 in matrix form as:

s2Y1
5AT

1 SA1 (6.26)

Now we seek to maximize s2Y1
subject to the constraint that A1 has a magnitude of one,

which means that ðAT
1A1 5 1Þ: To do this, we introduce a term called a Lagrange multiplier

λ1, and use it to form the expression:

s2Y1
1λ1ð1�AT

1A1Þ (6.27)

which we seek to maximize with respect to A1. Therefore, we take this new expression for
the variance of Y1 and set its partial derivative with respect to A1 to zero:

@

@A1
s2Y1

1λ1ð12AT
1A1Þ

n o
5 0 (6.28)

Using Equation 6.26, we can expand the expression for the partial derivative to:

@

@A1
AT

1 SA1 1λ1ð12AT
1A1Þ

� �
5 0 (6.29)

which we now simplify to:

2ðS2λ1IÞA1 5 0 (6.30)

where I is the P3P identity matrix. Because A1 cannot be zero, Equation 6.30 is a vector
multiple of Equation 6.16, the characteristic equation. In Equation 6.30, λ1 is the eigenvalue
and A1 is the corresponding eigenvector.

Given Equation 6.30, we can also state that:

ðS2λ1IÞA1 5 0 (6.31)

This can be rearranged as:

SA1 2λ1IA1 5 0 (6.32)

145PRINCIPAL COMPONENTS ANALYSIS

2. ANALYZING SHAPE VARIABLES



and simplified to:

SA1 2λ1A1 5 0 (6.33)

and further rearranged so that:

SA1 5λ1A1 (6.34)

This leads to the following substitutions and rearrangements of Equation (6.26):

s2Y1
5AT

1 SA1 5AT
1λ1A1 5λ1A

T
1A1 5λ1 (6.35)

Thus, the eigenvalue λ1 is the variance of Y1.

Interpretation of Results

As we stated above, PCA is nothing more than a rotation of the original data; it is sim-
ply a descriptive tool. The utility of PCA lies in the fact that many (if not all) of the fea-
tures measured in a study will exhibit covariances because they interact during, and are
influenced by, common processes. Below, we use an analysis of jaw shape in a population
of tree squirrels to demonstrate how PCA can be used to reveal relationships among traits.

Fifteen landmarks were digitized on the lower jaws of 31 squirrels (Figure 6.5). These
landmarks capture information about the positions of the cheek teeth (2�5), the incisor
(1, 14 and 13), muscle attachment areas (6, 9�12, 15) and the articulation surface of the jaw
joint (7 and 8). The 31 specimens include 23 adults and 8 juveniles (individuals lacking
one or more of the adult teeth).

Figure 6.6 shows the landmark configurations of all 31 specimens, after partial
Procrustes superimposition. This plot does not tell us much beyond the fact that there is
shape variation in the sample. We can infer from the areas of the scatters for individual
landmarks that there is not much variation in the relative positions of the cheek teeth. In
contrast, many of the ventral landmarks have noticeably larger scatters, suggesting that
their positions relative to the teeth are more variable.
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FIGURE 6.5 Outline drawing of the
lower jaw of the fox squirrel, Sciurus
niger, showing the locations of 15
landmarks.
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To obtain more precise information about the pattern of shape variation, the 31 sets of
landmark coordinates are converted into shape variables (see Chapter 3 for review), and
these shape variables are subjected to PCA. The 15 landmarks yield 26 shape variables, so
there are 26 PCs, and 26 scores for each specimen (its score on each component). The out-
put from PCA consists of the list of coefficients describing the PCs, the variance of each
component, each component’s percentage of the total variance, and the scores of each
specimen on each component.

As shown in Table 6.1, each PC has progressively less variance. Many of the compo-
nents represent such small proportions of the total variance that it is reasonable to ask
whether they describe anything biologically meaningful. One common rule of thumb is to
interpret only those components that represent more than 5% of the variance. In the squir-
rel jaw example, PCs 1 through 5 meet this criterion. They account for a total of 80.4% of
the variance in the sample, leaving 19.6% undescribed. This may seem like a large propor-
tion of the variance to omit from further analysis, but it is doubtful that any one of the
remaining 21 components describes a meaningful amount of variance.

The similarity in magnitudes of variances described by most components can be seen in
a scree plot, in which the variance, or percentage of the total variance, is plotted against
the ordinal number of the PC (Figure 6.7). In this example, there is a large difference
between the variances of the first two PCs, and much smaller differences between succes-
sive pairs of components. This difference is reflected in the scatter-plot of scores in the
two axes (Figure 6.8); the range of scores is much larger on PC1 than PC2, indicating that
PC1 accounts for a much larger portion of the total variance. If two components have simi-
lar variances (e.g. if the distribution of scores in Figure 6.8 were closer to circular), then
we have grounds to question whether either of them can be attributed to a distinct causal
factor. Thus, an alternative rule of thumb is to find the inflection point on the scree plot
and interpret only those components to the left of the inflection point (where the variance
of each component is distinct from the variance of the following component). The main
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FIGURE 6.6 Plot of landmark
coordinates of 31 S. niger jaws after
partial Procrustes superimposition.
The locations of landmark 6 in all 31
specimens are enclosed by an ellipse.
Similar ellipses could be drawn for
each landmark.
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difficulty with applying this rule is that scree plots often do not have inflection points that
are as obvious as the one in Figure 6.7.

Fortunately, there is a more rigorous approach to testing whether two successive PCs
have distinct variances. This is an application of a test developed by Anderson (1958) and
discussed in Morrison (1990). The null hypothesis is that some sets of R consecutive

TABLE 6.1 Eigenvalues From PCA of Squirrel Jaws

PC Eigenvalues % of Total Variance

1 1.133 1023 51.56

2 2.153 1024 9.83

3 1.643 1024 7.49

4 1.363 1024 6.22

5 1.163 1024 5.32

6 9.523 1025 4.36

7 7.183 1025 3.28

8 5.453 1025 2.49

9 4.493 1025 2.05

10 3.583 1025 1.64

11 3.253 1025 1.49

12 2.363 1025 1.08

13 1.793 1025 0.82

14 1.373 1025 0.63

15 9.833 1026 0.45

16 9.313 1026 0.43

17 6.873 1026 0.31

18 3.723 1026 0.17

19 3.063 1026 0.14

20 2.173 1026 0.10

21 1.663 1026 0.08

22 7.043 1027 0.03

23 5.373 1027 0.02

24 3.623 1027 0.02

25 1.153 1027 0.01

26 5.023 1028 ,0.01
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eigenvalues are equal to each other. In other words, the variation described by these com-
ponents cannot be distinguished from random variation. The eigenvalues are numbered
from Q1 1 to Q1R, where Q is a function of P (the total number of eigenvalues) and R
(the number of the particular components of interest) such that Q5P2R. Anderson
(1958) derived a χ2 statistic based on the likelihood-ratio criterion to test the hypothesis
that the Q1 1 eigenvalue is not distinct from the higher numbered eigenvalues:

χ2 52N
XN

j5Q11

ln λj 1NR ln

PN
j5Q11 λj

R

 !
(6.36)

where N is the sample size minus one. When N is large, the degrees for freedom are
(1/2 R(R1 1)2 1) (d.f.5 2 when R5 2). In the special case where Q1R5P, the test
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FIGURE 6.7 Scree plot of the pro-
portion of variance described by each
PC for the squirrel jaw data set. Arrow
indicates the inflection point.
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FIGURE 6.8 Scatter plot showing scores
on the first two PCs for the sample of 31
squirrel jaws shown in Figure 6.6.
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evaluates whether variation in the last R eigenvectors is spherical. To test two successive
eigenvalues, R is set to 2. For the squirrel jaw example, comparison of the first two eigen-
values yields χ25 19.12, which has a p-value less than 0.0001. Comparison of the second
and third eigenvalues yields χ25 0.55, which has a p-value of 0.76. Thus, PC1 is the only
one with a distinct eigenvalue, and the only one that can be regarded as biologically
meaningful.

If you use several software packages to run PCAs, you may occasionally find the
results differ in signs for the PCs (when that happens, the scores for individuals on those
axes also differ by a sign). Reversed axes and scores can be disconcerting, but there is
no need to worry � the sign of a PC is arbitrary. If A1 is an eigenvector corresponding
to λ1, then so is 2A1. If we change the sign on A1, then the score of the jth specimen on
the first axis will also change sign; Yj 5AT

1Xj so the product Y1A1 does not change
sign. In other words, the eigenvectors A1 and 2A1 are simply mirror images. The choice
of sign has no effect on the interpretations of this component, and no effect on the com-
putation of the subsequent component (a vector orthogonal to A1 will also be orthogonal
to 2A1).

To this point we have not discussed how to interpret the pattern of variation repre-
sented by a PC. That rests on the coefficients of the PC, which express the relationship
between the PC and the original variables. Because our original variables are shape vari-
ables, we can generate a picture of shape variation along any PC by multiplying the
original shape variables by the coefficients of the PC and summing them. Figure 6.9
shows the result of that computation for PC1 of shape variation in the sample of squirrel
jaws.

We should note that many of the studies applying PCA to geometric data call the method
“relative warps analysis” (RWA). PCA and RWA are not exactly equivalent, because the
components of variance extracted by RWA are sometimes weighted by bending energy
(originally, RWA was an analysis of components of variation relative to bending energy,
hence the term “relative” in the name of the method). When variation is not weighted by
bending energy, RWA is PCA. We prefer the more familiar term.

FIGURE 6.9 Pattern of shape change
along PC1 for the 31 squirrel jaws shown in
Figure 6.6. Circles indicate the locations of
the landmarks in the mean shape of the sam-
ple; arrows indicate the changes in the rela-
tive positions of the landmarks as the score
on PC1 increases. The deformed grid illus-
trates the thin-plate spline interpolation over
the entire form.
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CANONICALVARIATES ANALYSIS

The purpose of CVA is to simplify the description of differences among groups and to
form mathematical functions which may be used to assign specimens to groups, acting as
a multiaxis discriminant function. For example, CVA could be used to describe differences
in mandible shape among queens, soldiers and workers in a colony of ants, and to deter-
mine the rate at which individual ants could be correctly assigned to one of these classes.
It could also be used to describe differences in soldier morphology among colonies, spe-
cies, or more inclusive categories. If individuals in a study can be sorted into mutually
exclusive sets, CVA can be used to describe the differences among those sets. CVA does
not provide a test of differences in the mean forms, that test is best performed using the
General Linear Model framework (see Chapters 8 and 9), which encompasses the familiar
MANOVA methods. CVA does allow estimation of the rate at which specimens may be
effectively sorted or assigned as members of a priori groups, which implies both differ-
ences in the mean shape and also some degree of non-overlap in the distributions of traits.
This analysis of assignments or classifications makes CVA a useful complement to tests of
difference in mean form.

There are many similarities between CVA and PCA. Like PCA, CVA constructs a new
coordinate system (the canonical variates, CVs) and determines the scores on those axes
for all individuals in a study. Also, the CVs are linear combinations of the original vari-
ables and are constrained to be mutually orthogonal. However, whereas PCA is used to
describe differences among individuals, CVA is used to describe differences among group
means. In this sense, CVA is analogous to a PCA of the group means. Another difference
between CVA and PCA is that CVA uses the patterns of within-group variation to scale
the axes of the new coordinate system. Because of this rescaling, CVs are not simply rota-
tions of the original coordinate system, and distances in CV space are not equal to dis-
tances in the original coordinate system. (This is where the analogy breaks down.) As a
result of the rescaling, CV1 is the direction in which groups are most effectively discrimi-
nated, which is not necessarily the direction in which the group means are most different.

An important difference between PCA and CVA is that distances computed along the
CVA axes are not equivalent to Procrustes distances and, thus, some care must be taken in
interpreting positions in morphospaces defined by CVA axes. The number of CVA axes
that can appear in an analysis is also limited to the number of distinct groups present
minus one (assuming this is smaller than the degrees of freedom per individual), another
difference relative to PCA, in which the number of meaningful axes is controlled by the
degrees of freedom per measured individual.

Groups and Grouping Variables

A group is a set of individuals that share a particular state of a discontinuous trait.
Examples of groups include sexes, color morphs, species, and supraspecific categories like
guilds. The groups analyzed by CVA must be mutually exclusive, meaning that they can-
not comprise nested or intersecting sets. In other words, the groups differ in the values of
a categorical variable, which is sometimes called a “qualitative trait” or a “grouping
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variable”. The important characteristic of these variables is that they are not measured nor
arrayed in a sequence; they do not have intrinsic numerical values, nor do they have an
inherent order or sequence.

Sometimes, features that can be scored on a continuous graded scale are treated as cate-
gorical variables. For example, the proportions of meat and vegetation in an animal’s diet
can be quantified and scored along a continuum. Nevertheless, it is a common practice to
sort diets into a small number of categories (e.g. carnivore, herbivore, omnivore). Other
traits that might be treated in a similar fashion include geographic location and age. There
are several reasons for treating these kinds of traits as categorical variables. One is a lack
of sufficient information to justify or support a more finely graded analysis � for example,
a researcher may not have precise data on the proportions of food items in the diets of all
species or individuals in a study. Another reason for treating a quantifiable trait as a cate-
gorical variable is that the investigator may not want to impose a hypothesis of ordering
on the data, which is often a consideration when groups are not dispersed along a single
straight line. Similarly, the investigator may not want to assume that all steps are of equal
value (e.g. ontogenies often can be divided into discrete instars or age classes based on
sequences of developmental events, but the sequentially numbered steps may represent
different amounts of time or ontogenetic change). Under these circumstances, a quantifi-
able trait may be treated as a categorical variable and CVA would then be used to describe
differences among the groups delineated by distinct states. However, the user should be
aware that taking this approach also limits the inferences that can be drawn from the
result � for example, an observation that age classes can be differentiated does not neces-
sarily imply the kind of monotonic progression from age to age that can be inferred from
a regression.

Geometric Description of CVA

To develop a geometric intuition for CVA, we return to the metaphor of a slightly flat-
tened watermelon. In PCA, we described the positions of seeds within the watermelon by
finding its greatest dimensions. In CVA, we are not interested in the positions of seeds in
the watermelon; instead, we want to describe the positions of the watermelons in the field
(centroids of the ellipses in Figure 6.10). If all we want to know is the location of each

X1

X
2

FIGURE 6.10 Ellipses of variation in two
dimensions (X1 and X2) for four sample
populations. Stars indicate locations of the
means of each sample.
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melon, we could simply plot each melon’s centroid; however, suppose we want to find
the direction in which it is easiest to walk across the field without stepping on any of the
melons (perhaps we want to spread fertilizer in the field). To solve this problem, we want
to find the direction in which the melons are farthest apart. This requires that we know
the averages of the shapes and orientations of all the melons, not just the position of each
melon’s centroid.

Similarly, CVA begins with a PCA of the pooled (averaged) within-group variances.
This gives us a new coordinate system in which we can describe the position of each
group. In our field, we begin by defining a new coordinate system that would be aligned
with the axes of the average melon (Figure 6.11).

Now we can see that the melons overlap more in the direction defined by the long axis
of the average melon. To take this into account, we rescale this axis proportionate to the
elongation of the average melon. In effect, we distort our plot of the field until the average
melon looks circular rather than elliptical (Figure 6.12).

Now we can solve for the direction in which melons tend to be farthest apart in the
rescaled space by performing a PCA on the group centroids. The axes produced by this
last computation are the CVs (Figure 6.13A). The scores of individuals on the CVs are the
projections of the individuals onto these new coordinate axes (Figure 6.13B).

Because computation of the CVs involves a rescaling, interpretation of CV scores can be
complex. If we undo the rescaling and rotation that were used to solve for the CVs
(Figure 6.14), we see that each CV is a linear combination of the original variables.
However, we also see that the CVs are not orthogonal axes in the original coordinate
space. Furthermore, distances on CVs are not equivalent to distances in the original space.

Note that, in this example, there are more groups than variables in the original data set.
In such cases, the number of CVs will be equal to the number of variables. Most studies
will have fewer groups than variables and, in these cases, the number of CVs will be one
less than the number of groups. If there are three groups in a study, the differences among

(PC1)

)2
C

P(

X1

X2

FIGURE 6.11 Graphical representation of
the first step of CVA. The entire data set is
rotated to a new coordinate system that is
aligned with the PCs of the pooled variances.
At this stage the relative positions of the four
samples (and the individuals within groups)
have not changed. The original coordinate sys-
tem (Figure 6.10) is shown in the dotted lines.
The axes of the new coordinate system are
labeled in parentheses because we have not
specified the location of the average sample,
only the directions of its variances.
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FIGURE 6.12 Graphical representation of the second step of
CVA. The new coordinate system (solid lines) is rescaled in pro-
portion to the pooled within-group variances in the original space.
Variation within samples will be circular in the new space if the
original variances were all identical. Note that the axes of the origi-
nal coordinate system (dotted) are not orthogonal in the new
space. Furthermore, distances in the new space are not equivalent
to distances in the original space (Figure 6.10).

PC1

2
C

P

CV1

CV2

X2

X1

(B)PC1

2
C

P

CV1

CV2

X2

X1

(A)

FIGURE 6.13 Graphical
representation of the
final steps in CVA. (A) CV1
is the direction through
the rescaled space (outer,
dashed axes) in which the
group means are most dif-
ferent; CV2 is the direction
orthogonal to CV1 in which
the group means are most
different. (B) Scores of indi-
viduals in the CV space are
their projections onto the
CVs. Circles represent the
scores of one of the sample
means.
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them can be summarized as a plane defined by two vectors, whether the original data
included three variables or 300.

Algebraic Description

In CVA, as in PCA, we begin with a set of measures or coordinates X5 (X1, X2, X3 . . .
XP), and we want to find the vector A15 (A11, A21, A31. . .. AP1) such that:

Y1 5A11X1 1A21X2 1A31X3 1?1AP1XP (6.37)

In PCA, we solved for the eigenvalues and eigenvectors of the variance�covariance
matrix S. In CVA, we are concerned with the ratio of two variance�covariance matrices:
one is the pooled within-groups variance�covariance matrix, SW, which represents the
deviations of individuals from their respective group means; the other is the between-
groups variance�covariance matrix, SB, which represents the portion of the total variance
(deviations from the grand mean) not explained by SW. In other words, SW represents dif-
ferences within groups, and SB represents differences between the groups. So, in CVA we
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FIGURE 6.14 Interpretation of CV scores in
terms of the original axes. (A) Rescaling the axes
has been reversed, restoring orthogonality of X1

and X2. White circles represent the scores of one
individual on each CV. (B) Rotation of the original
axes is reversed, restoring the original orientation.
Arrows show projections of the CV scores onto the
original axes; each CV score represents a combina-
tion of scores on the original axes.
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want to find the Y1 that maximizes the ratio of between-group variance to within-group
variance. The within-group variance of Y1 is:

s2Y1within 5AT
1 SWA1 (6.38)

and the between-group variance of Y1 is:

s2Y1between 5AT
1 SBA1 (6.39)

The form of these expressions should be familiar from our discussion of PCA.
As before, we use the Lagrange multiplier λ1 to form the expression:

s2Y1between

s2Y1within

 !
2λ1 5AT

1A1 (6.40)

then make the substitutions indicated by Equations 6.38 and 6.39 to form:

AT
1 SBA1

AT
1 SWA1

 !
2λ1ð12AT

1A1Þ (6.41)

This is the expression we will maximize relative to A1, under the constraint that
AT

1A1 5 1: Taking the partial derivative of this expression again yields a characteristic
equation that can be solved for the eigenvalues and corresponding eigenvectors of S21

W SB:
Note that the matrix inversion in Equation 6.41 does require that the pooled within group var-
iance�covariance matrix be invertible. This, in turn, requires that the variance�covariance be
of full-rank, meaning that the number of variables must equal the number of degrees of free-
dom in the system, which poses some challenges, particularly when working with semiland-
marks. The number of CVA axes appearing is also limited to a maximum of the number
of groups minus one.

Interpretation of Results

To help interpret the CVA result, and to illustrate the effect of the rescaling step on the
result, we first show PCA on the data set that will be used in the CVA example. This data
set is composed of 15 landmarks on the lower jaws of 119 squirrels from three geographic
areas (Figure 6.15). For each landmark, the cloud of points overlaps broadly, suggesting
similarly broad overlaps in the distribution of the whole shapes. Closer examination
shows there are slight differences in the relative positions of some landmarks � circles
predominate at one end of the clusters, triangles at the other. This is most evident for land-
mark 13, which is more anterior in the western Michigan sample and more posterior in
the southern sample. The scores on PC1 (Figure 6.16A) show there are differences between
the distributions of mandible shape in the three samples, and that each sample varies con-
siderably along this axis. As shown by the deformation grid (Figure 6.16B), that difference
primarily consists of shifts in the relative position of landmark 13, as surmised from the
superimposed shapes, but there is also expansion of the angular process (landmarks
10�12) and contraction of the space between the molars and the tips of the coronoid and
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condyloid processes (between landmarks 5 and 6�9). This dimension is highly variable
within samples, such that the variation is quite large relative to the differences between
means. Consequently, PC1 is unlikely to meet the criterion for an efficient discriminator
even though the differences on this axis might be statistically significant. Another axis that
has relatively less variation compared to the differences between means would be a better
discriminator.

Results of CVA will look different from those of PCA for two crucial reasons. First,
CVA is describing differences between groups, and the direction in which group means
are most different is not necessarily the direction in which individuals are most different.
Second, CVA does not simply rotate the original data to the axes that maximize the group
differences, it finds the axes that optimize between-group differences relative to within-
group variation and, in general, these axes will be different directions from the ones that
maximize between-group differences. In addition, optimization also involves rescaling
such that the new axes are scaled differently from the original axes and scaled differently
from each other. Consequently, distances and relative positions in CV space can be quite
different from distances and positions in the original data, and interpretations of results
can be counterintuitive.

Because there are only 3 sample groups, there can be only 2 CVs. The plot of scores on
those two axes (Figure 6.17) shows that it was possible to find two axes of differentiation,
that the 3 means are not collinear. The distributions also show more circular distributions
with much less overlap than was seen in the PC scores. Thus, different combinations of

FIGURE 6.15 Landmark coordinates, in partial Procrustes superimposition, for 119 squirrels from three geo-
graphic samples. Circles5western Michigan, gray squares5 eastern Michigan, triangles5 southern states.
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the shape variables were found by CVA to be more effective discriminators of these
samples than were the PCs.

As we did with the PCs, we multiply the original shape variables by the coefficients of
the CVs and sum them. This produces a series of vectors of relative landmark displace-
ment that illustrates the shape differentiation represented by the CVs. As shown in
Figure 6.18A, the amount of the shape difference described by CV1 of this data set is
imperceptible. When the deformation is exaggerated to visualize the pattern, it can be seen
that differences in the relative heights of the teeth are the most useful trait for discriminat-
ing among the groups. Relative tooth heights are not an efficient discriminator because the
differences between groups are large, but because the variation within groups is even
smaller than the differences between groups. Consequently, a biologically insignificant fea-
ture is determined to be diagnostically important. Figure 6.18C illustrates all of the other
shape differences that are correlated with CV1. These changes, which may be helpful for
diagnosing group members, include a portion of the shape differences that were detected
using PCA. This figure demonstrates another important point to bear in mind when using
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FIGURE 6.16 Shape variation in three geographic samples of squirrel jaws analyzed by PCA. (A) Scores on
the first 2 axes (circles5western Michigan, squares5 eastern Michigan, triangles5 southern states). (B)
Deformation showing shape change association with increasing scores on PC1.
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CVA: the CV is not a complete description of the difference between groups, it is just that
part of what differs between groups that varies least within groups.

Like PCA, CVA will compute a set of axes under the specified constraints, regardless of
whether the differences between groups are statistically significant. The optimal discrimi-
nator in a data set need not be a statistically significant discriminator, and a statistically
significant discriminator may not turn out to be particularly effective in assigning speci-
mens to groups. To determine how many CVs are effective discriminators, we employ
Bartlett’s (1947) test for differences in the value of Wilk’s lambda (Λ). Wilk’s Λ is the
within-groups sum of squares divided by the total sum of squares (within-plus between-
groups):

Λ5
detðWÞ
detðTÞ 5

detðWÞ
detðW1BÞ (6.42)

where det is the determinant of the matrix. Conveniently, Λ can be computed as the prod-
uct of the eigenvalues of W(W1B)21. Bartlett’s test uses the following formula to estimate
a χ2 test statistic:

χ2 52ðW 2ðP2B1 1Þ=2Þln Λ (6.43)
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FIGURE 6.17 CV scores for the three geographic samples of squirrel jaws. Circles5western Michigan, gray
squares5 eastern Michigan, triangles5 southern states.
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FIGURE 6.18 Shape differentiation associated with CV1 for the three geographic samples of squirrel jaws. (A)
Transformation of the reference shape to the shape corresponding to a score of 0.01 on CV1, reflecting the actual
magnitude of difference between the means of the western Michigan and southern samples. (B) Transformation of
the reference shape to the shape corresponding to a score of 0.1 on CV1, reflecting exaggeration by a factor of 10. (C)
Deformation representing all of the shape change correlated with CV1, for an individual with a score of 0.1 on CV1.
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In this expression, P is the number of variables, W5N2B2 1 (where N is the total
number of individuals) and B5G2 1 (where G is the number of groups). The degrees of
freedom are determined by the product of P and B.

The testing procedure begins by computing the estimated χ2 in which Λ is the product
of the eigenvalues of all CVs. If this value is significantly greater than expected for the
given degrees of freedom, it is safe to infer there are statistically significant differences
among the groups. In the squirrel jaw example, there are three groups and 26 shape vari-
ables, and the maximum possible number of meaningful CVs is two. Bartlett’s test on both
CVs yields a χ2 of 206.6, with 52 degrees of freedom, for a p-value less than 0.000001. This
result indicates that at least some of the groups in the study can be discriminated using
scores on these two CVs.

We do not yet know whether both CVs contribute to discrimination of the groups, so
the next step is to remove the eigenvalue for the first CV (the most efficient discriminator)
and repeat the test. Reducing the number of CVs reduces the number of groups that can
be discriminated, which reduces B by 1 and the degrees of freedom by P. These changes
produce a χ2 of 83.5 with 26 degrees of freedom for a p-value that is still less than
0.000001. Thus, the second CV also contributes to discriminating among the groups.

In general, the test is reiterated using the remaining R (5B2 i) eigenvectors until R5 0
(all eigenvalues have been removed) or some set of R remaining eigenvectors fails the test.
If R goes to zero, the analysis will have shown that some groups can be discriminated on
the CV that is the least efficient discriminator. If a set of R eigenvectors fails the test, then
only the first B2R CVs contribute to discriminating among the groups. Note that the test
cannot be taken to indicate that all groups can be discriminated, and it does not indicate
which groups can be discriminated.

One simple approach to assessing the utility of the CVs for discriminating among
groups can also be evaluated using the Mahalanobis distances of specimens from the
group mean. The means are computed using the a priori group assignments. The
Mahalanobis distance between a specimen X and the mean M of a group, is given by:

D5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX2MÞTS21ðX5MÞ

q
(6.44)

where S21 is the inverse of the variance�covariance matrix of the CV scores of the speci-
mens. The predicted group membership of each specimen based on the scores is deter-
mined by assigning each specimen to the group whose mean is closest (under the
Mahalanobis distance) to the specimen. All of the CVs that pass Bartlett’s test, and only
those CVs, are used to compute the Mahalanobis distances and assign specimens to
groups.

When specimens are assigned to a group using CV axes estimated using the same data
set, the resulting rate of correct specimen assignment to groups are referred to as a resub-
stitution rate of assignment. Resubstitution rates involve a certain degree of circularity, in
that the same data was used to create the discriminant functions (CV axes) and to assess
the performance of those functions. This process leads to some level of over-fitting of the
model to the data, and an overestimate of the effectiveness of the CVA. A number of
approaches have been developed to produce more reasonable estimates of the actual error
rate for a classification method (Knoke, 1986; Schiavo and Hand, 2000). The actual error rate
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is the rate of error for the particular assignment method given the data, a rate contingent
on our given data; there is also an expected error rate which would be the rate we would
achieve given another data set similar to the one we have collected.

The simplest approach to estimate the actual error rate (given a particular data set) is to
use a cross-validation or jackknife procedure (Efron, 1983; Efron and Tibshirani, 1995; Van
Bocxlaer and Schultheiß, 2010). In these procedures, the data set is divided into two sub-
sets, a training set and a test set. The test set may be as small as one specimen, or as much
as 50% of the data set, with the training set consisting of all remaining data. The CVA is
then fit to the training set, and used to assign the members of the training set to a group.
This process is repeated for a large number of possible variations of the test set, and the
rate of correct specimen assignment is computed over all the test sets employed. This
yields a cross-validation (or jackknife, when the test set has n5 1) rate of correct specimen
assignment, which is a better predictor of the overall effectiveness of the method than
the resubstitution rate. Most modern software will have some form of jackknife or cross-
validation method available.

The difference between the resubstitution rate and the cross-validation rate of assign-
ment can be substantial. The plots of CVA scores produced by most software systems are
resubstitution rates, and so the patterns produced by these plots must be viewed with sub-
stantial caution, as they may overstate the effectiveness of the method. Nicely separated
groups on a CVA plot may not translate into effective cross-validation rates, or a statisti-
cally reliable method. It is not unusual for a CVA to indicate that one or more of the CV
axes produced were statistically significant, but to produce assignment rates no better than
expected by chance. For this reason, it seems wise to require both statistically significant
CVA axes and a cross-validation rate of correct specimen assignment that is substantially
better than chance.

It turns out to be relatively straightforward to compute the random rate of correct speci-
men assignment that can be achieved via random sorting. A biased random allocation of
specimens to groups proportional to the number of individuals in the group will yield the
highest random rate. If we have a total of N specimens distributed among m groups, and
ni members in the ith group, then the maximum rate of random assignment of specimens
to groups is given by:

Random Rate5
Xm

i51

n2i
N2

(6.45)

This is achieved by a random rule of assigning each specimen to a group with a ran-
dom probability ni/N. In such a situation, Equation 6.45 is the expected rate of correct
specimen assignments. If the group sizes are all equal, this rate will simply be 1/m, but if
the group sizes are unequal, the random rate will be higher than that.

In studies focusing on classification rate, rather than morphospace analysis, incorporat-
ing size into a CVA may help improve the classification rate. In such situations, it is possi-
ble simply to include the log of centroid size as an additional column in the data matrix.
As discussed in Chapter 4, the new space, sometimes called Procrustes Form Space, would
not be a shape space. Another possible approach would be to use the Procrustes Size
Preserving methods discussed in Chapter 14.
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Table 6.2 shows the resubstitution classification results based on CVA of the three sam-
ples of squirrel jaw discussed earlier. As shown in the first row, 62 of the 69 western
Michigan squirrels have jaws that are closer to the mean of their sample than to the mean
of another sample, based on the Mahalanobis distance. In contrast, only one specimen
from each of the other samples is farther from the mean of its own sample than it is from
the mean of another sample. Like the plot in Figure 6.17, this result contributes to the gen-
eral impression that the members of these three groups can usually be discriminated.
Using a jackknife cross-validation test, we can see that the samples may not be quite so
distinct (Table 6.3). The rate of correct classification drops by a little more than 10%. It is
still clear that the three groups can usually be discriminated, but it is also more apparent
that a substantial proportion of individuals on the fringes of the shape distributions are
apt to be misclassified based on shape alone.

CVA of Rank-Deficient Data

One issue that arises in working with CVA is the need to invert an estimated, pooled
variance�covariance matrix, which requires that the degrees of freedom in the matrix be
greater than the number of variables in the matrix. This is a problem at small sample sizes,
or when using semilandmarks (because each semilandmarks is represented by two

TABLE 6.2 CVA Classification Table for 119 Squirrel Jaws

A priori Assignments A posteriori Assignments

Western Michigan Eastern Michigan Southern States Total

Western Michigan 62 4 3 69

Eastern Michigan 1 22 0 23

Southern states 0 1 26 27

The a priori classifications are based on the geographic localities where specimens were collected. The a posteriori assignments are

based on Mahalanobis distances of individuals from the means of the a priori groups. Total is the total number of specimens in

each geographic sample. Thus, 62 specimens in the western Michigan sample were correctly classified using Mahalanobis

distance, and 7 were misclassified as members of one of the other geographic samples.

TABLE 6.3 CVA Classification Table for 119 Squirrel Jaws, using a Jackknife Cross-Validation Analysis

A priori Assignments A posteriori Assignments

Western Michigan Eastern Michigan Southern states Total

Western Michigan 56 6 7 69

Eastern Michigan 4 18 1 23

Southern states 1 5 21 27

Re-analysis of classification rates for the three geographic samples of squirrel jaws analyzed in Table 6.2. The overall rate of

correct classifications has dropped from 92% in the resubstitution rates to 80% in the jackknife.
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variables but has only one degree of freedom). The simplest approach to this problem is to
use PCA as a dimensionality reduction tool, and carry out the CVA on some subset of the
PC scores, rather than on the actual data. The issue that then arises is how to determine
the number of PC axes to use. If all PC axes with non-zero eigenvalues are included, then
there is no loss of information, but most software has some level of rounding error pres-
ent, which can make it difficult to determine if small eigenvalues are zero or not. Some
workers will simply use a set of PC axes comprising 95 or 99% of the variance. One study
showed decreased overfitting of the CVA when fewer PC axes were used (Sheets et al.
2006). The Between Groups PCA (Mitteroecker and Bookstein, 2011) may be another viable
approach to this issue.

A radically different approach to working with rank-deficient data is to use a
machine learning approach to specimen classification such as the Weka system (Witten
and Frank, 2005). These approaches attempt to build computer-based classification rule
systems, with reference to parametric statistical models. The performance of these meth-
ods is typically assessed using cross-validation methods, and these machine learning
methods appear to do as well as CVA, at least with some data sets (Van Bocxlaer and
Schultheiß, 2010).

BETWEEN GROUPS PRINCIPAL COMPONENTS ANALYSIS

To avoid the problems engendered by the rescaling step in CVA, Mitteroecker and
Bookstein (2011) suggest Between Groups Principal Components Analysis (BGPCA). This
method analyzes differences between means without regard to the magnitude or pattern
of within group variation. It is, simply, a PCA of the means. Absence of the rescaling step
eliminates distortion of the distances between the means. It also obviates concerns about
the artificiality of discriminators based on trivial distinctions, although this may not be
advantageous in all applications. Restricting the analysis to the subspace defined by the
means reduces the dimensionality of the space from the number of variables (2k�4, for a
set of two-dimensional landmarks) to a maximum of 1 less than the number of groups.
BGPCA finds the principal components of this subspace.

Figure 6.19A shows the mean shapes of the jaw in the three squirrel samples analyzed
previously. Again, the position of landmark 13 differs greatly between the mean shapes;
differences in other regions are also apparent. The first PC of this subspace is approxi-
mately the axis between the two most different means � those of the western Michigan
and southern samples (Figure 6.19B). The second axis, as in other PCAs, is constrained to
be orthogonal to the first. In this example, it describes the divergence of the eastern
Michigan sample from the axis connecting the other two means. Were the differences
between means less neatly balanced, or if there were more groups, the axes might not be
so conveniently aligned with the means. As might be predicted from the shape compari-
son in Figure 6.19A, the deformation illustrating the shape differences associated with PC1
scores shows that the mean shapes differ primarily in the relative position of landmark 13,
but also in shape of the angular process and space between the other posterior processes
and the molars (Figure 6.19C). In this particular data set, the mean shapes happen to have
differed primarily in the direction of highest within-sample variation. This might not have
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been the case if the samples were more distantly related or if they were collected from
more distinctive habitats.

BGPCA explicitly disregards the issue of discrimination, however, if one has an interest
in evaluating discrimination, or has other reasons for examining variation along these
axes, the scores of individuals on these axes can be obtained easily by multiplying the
data matrix (superimposed landmark coordinates) by the eigenvectors of the BGPCA. The
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FIGURE 6.19 Differences in mean shape of squirrel jaws from the three geographic samples, analyzed by
BGPCA. (A) Mean shapes. (B) Scores. (C) Deformation showing the shape difference between means of the west-
ern and southern samples along BGPC1.
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result of that computation for the 119 squirrel jaws is shown in Figure 6.20. It is important
to remember that this is the distribution of shapes in a subspace that was defined by the
positions of the means in a larger space. In the case of this example, the scores in the origi-
nal 26-dimensional space have been projected onto a two-dimensional plane. The PCs of
the original space accounted for only 42% of the variation; the plane of means likely
accounts for less than that. It is important to remember that all variation orthogonal to this
subspace has been excluded. It is only the differences between means that remain undis-
torted by this projection. The utility of examining scores of individuals on these axes will
depend on the scientific merits of focusing subsequent analyses on this subspace.
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C H A P T E R

7

Partial Least Squares Analysis

Partial Least Squares (PLS) is a method for exploring patterns of covariation between
two (and potentially more) blocks of variables. It can be used to study covariation between
shape and environmental variables, such as between nasal cavity morphology and temper-
ature and aridity (Noback et al., 2011) or between shape and a collection of climatic, geo-
graphic and biotic variables, e.g. vegetation type and human density (Monteiro et al.,
2003). PLS can also be used to analyze the relationship between form and function, such
as the relationship between horn morphology and fighting behavior in bovids (Lundrigan,
1996) or between morphology and disease status (Lowe et al., 1997; Bookstein et al., 2002).
As well as being useful for analyzing the relationship between shape and non-shape vari-
ables, PLS can also be used to analyze the covariances between two or more blocks of
shape variables. That ability to examine relationships between two or more blocks of shape
variables makes PLS useful for synthesizing information about three-dimensional
morphologies from two two-dimensional views (e.g. Rohlf and Corti, 2000) or for relating
the shapes of functionally interacting parts such as the maxillary and mandibular denti-
tions (Sheets et al., in press). Because PLS can be used to examine the covariance between
blocks of shape variables, the method can be used to examine morphological integration
and modularity (Bookstein et al., 2003; Klingenberg et al., 2003; Bastir and Rosas, 2004;
Bastir et al., 2005; Mitteroecker and Bookstein, 2007).

PLS, like the ordination methods discussed in the previous chapter, reduces the
dimensionality of the data (of both blocks), yielding axes that explain the covariance
between blocks, ordered from the pair that explains the maximal covariance to the pair
that explains the least, all of which are mutually orthogonal. It also gives scores on those
axes along with the proportion of the total covariance between blocks explained by that
pair of axes and the correlation between the scores for each pair of axes. It obviously dif-
fers from Principal Components Analysis (PCA) in that it examines the covariance
between blocks rather than the variance within a block. It also differs from other methods
that examine the relationship between sets of variables, for reasons that will be discussed
in more detail below. An important feature of PLS is that the variables within the blocks
need not be independent of each other. For example, in the study relating nasal cavity
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morphology to temperature and aridity, the measures of temperature included mean
yearly temperature, coldest monthly temperature and warmest monthly temperature, and
the measures of aridity included mean yearly vapor pressure, lowest monthly vapor pres-
sure and highest monthly vapor pressure (Noback et al., 2011). Additionally, the number
of variables can greatly exceed the number of cases, making PLS useful for discriminating
between groups when there are far more shape variables than specimens (Barker and
Rayens, 2003; Sheets et al., 2006; Mitteroecker and Bookstein, 2011). This makes PLS partic-
ularly useful for geometric morphometric studies because it is common to have far more
shape variables than specimens in studies, especially when the data comprise semiland-
marks as well as landmarks.

PLS is probably unfamiliar to many biologists even though it has been used extensively
in the social sciences (see Wold, 1966; Bookstein, 1982; Jöreskog and Wold, 1982), in clini-
cal studies (e.g. Sampson et al., 1989; Streissguth et al., 1993; Lowe et al., 1997), economics
(Fornell and Bookstein, 1982) and chemistry (Kemsley, 1996; Barker and Rayens, 2003).
Thus, a large part of this chapter discusses similarities and differences between PLS and
more familiar methods, including regression, Principal Components Analysis (PCA) and
Canonical Correlation Analysis (CCA). Because of the potentially wide range of applica-
tions of this method, it is important to understand how it is related to the other methods
that address similar questions. Before discussing the method in more detail, we note that
one approach to PLS employs a mathematical technique not yet introduced in this text:
Singular Value Decomposition (SVD). SVD is related to the more familiar decomposition
by eigenanalysis, which is used to extract principal components from the variance�
covariance matrix and also the partial warps from the bending-energy matrix. SVD
offers a more general approach, one that is needed because in PLS we are decomposing
matrices that are not square and symmetric, meaning that the number of rows and col-
umns need not be equal and the first row is not also the first column. There are other
approaches to PLS analysis available as well (Wold, 1966; Streissguth et al., 1993;
Bookstein et al., 2003). Because PLS uses SVD, the vectors generated by PLS are often
called Singular Axes (SAs); in some geometric morphometric studies they are also called
Singular Warps.

ANALYZING COVARIANCES BETWEEN BLOCKS AND
SIGNIFICANCE TESTING

We begin the analysis with two blocks of data that are measured on the same indivi-
duals, such as a block of shape variables and another of ecological variables. Given these
blocks, we might first wish to determine whether the two blocks covary. To that end, we
wish to quantify the covariance between the two blocks and to determine whether that
covariance exceeds what we might obtain by chance. We thus have a one set of p1 vari-
ables, Y1, our first block, which will be a set of shape variables, and a second set of p2 vari-
ables Y2, which could also be shape data or another set of measurements. We can now
compute the variance�covariance matrix, R, which can be thought of as comprising the
variance�covariance matrices within blocks Y1 and Y2 (R1 and R2, respectively) with
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dimensions p13 p1 and p23 p2 respectively and the covariance matrix between the two
blocks R12 (with dimension p1 by p2), giving

R5
R1 R12

Rt
12 R2

� �
(7.1)

where Rt
12 is the transpose of R12. The variance�covariance of the combined data can thus

be thought of as having three distinct parts, the first two of which are the variance�
covariance matrices within each block (R1, R2) and the third, which is the covariance
between the two blocks (R12).

The covariance between the two blocks can be quantified by Escoufier’s coefficient
(Escoufier, 1973), which is a multivariate extension of the ordinary univariate correlation.
That coefficient is given by the expression:

RV5
traceðR12R

t
12Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

traceðR1Rt
1ÞtraceðR2Rt

2Þ
p (7.2)

The numerator is the summed squared covariances between the two sets of variables
and the denominator is the square root of the product of the summed squared variances
within each block. Escoffier’s coefficient thus ranges from 0 (no covariance) to 1 (complete
covariance). The statistical significance of RV can be tested by randomizing the order of
observed values (the rows of the matrix Y1, for example) and recomputing the value of the
coefficient for the permuted version of Y1 and Y2 (Klingenberg, 2009). Note that this will
alter the covariance between blocks, but not the variance within each. If the observed
value of RV lies outside the confidence interval of values obtained by the permutations,
for some chosen α, then the observed RV (and therefore the covariance between the two
blocks) is statistically significant.

MATHEMATICAL DETAILS OF TWO BLOCK PLS

Given that matrix, Y1, of p1 variables measured on n specimens, and the other block, Y2,
of p2 variables, we compute the variance�covariance matrix, R, as discussed above, which
comprises the within-block variance�covariance matrices of blocks Y1 and Y2 (R1 and R2,
respectively) and the covariance matrix between the two blocks R12 (as shown in Equation
7.1). We then perform a singular value decomposition (SVD) of R12:

R12 5USVt (7.3)

S is a p13 p2 diagonal matrix whose entries are the Pmin singular values, λI (there are as
many singular values as there are variables in the smaller block, Pmin). The matrices U and
V have dimensions p13 pmin and p23 pmin, respectively; their columns are the Singular
Axes (SAs). The first columns of U and V comprise the paired SAs corresponding to the
first singular value λ1, just as the first Principal Component (PC1) is the axis correspond-
ing to the first eigenvalue of the variance�covariance matrix. The SAs are ordered by
decreasing singular values, just as PCs are ordered by decreasing eigenvalues. Scores on
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SAs are calculated just like scores on PCs, i.e. by multiplying the data for each specimen
by the SA (i.e. taking the dot product between an SA and the data for a specimen). Scores
are calculated for each block separately.

The fraction of the total covariance of the two blocks expressed by the ith pair of singu-
lar axes is given by:

λ2
I

PPmin

j51

λ2
j

(7.4)

Whether a singular value is larger than we would expect from randomly related blocks
is determined by comparing the observed singular value to the distribution produced by
randomly permuting the covariance structure between blocks. In such a permutation test,
the vectors of observations, each representing a specimen in the first block, are randomly
associated with vectors of observations from the second, thereby randomizing the covari-
ance structure between blocks without altering the variance�covariance structure within
the blocks. If the observed singular value lies outside the 95% confidence interval obtained
from the permuted data sets, the observed SA is judged to be statistically significant. The
correlation between the scores on the two blocks on the ith SA is also a measure of the sta-
tistical significance of the axis, and this correlation also may be tested via a permutation
test in exactly the same manner.

Three Block PLS

It is possible to extend PLS to more than two blocks of data, such as when we have
three blocks of data Y1, Y2 and Y3, and seek the linear combinations of variables within
each block (expressed as vectors U1, U2, U3) which produce the greatest covariation of
scores (s15Y1U1, s25Y2U2, s35Y3U3). The vectors U1, U2, U3 are the singular axes of such
a system, and s1, s2 and s3 are the scores along the singular axes. It is then possible to com-
pute the correlation between each pair of scores r1�2, r1�3 and r2�3. As discussed by
Bookstein and colleagues (2003), there is no standard approach to a multiblock PLS; sev-
eral are possible based on different properties of the PLS method. Bookstein and collea-
gues follow the approach taken by Streissguth and colleagues (1993), which uses an
iterative method to estimate U1, U2 and U3.

In this approach, one starts with an arbitrary choice of the first axes U1, U2 and U3,
using random values or 1/n0.5 if there are n entries in the vector U. The following set of
steps (Bookstein et al., 2003) is then iterated:

(a) Compute the scores (s1, s2)

s1 5Y1U1 (7.5a)

s2 5Y2U2 (7.5b)

s3 5Y3U3 (7.5c)
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(b) Normalize the scores to unit variance

s1 5 s1=ðstandard deviationðs1ÞÞ (7.6a)

s2 5 s2=ðstandard deviationðs2ÞÞ (7.6b)

s3 5 s3=ðstandard deviationðs3ÞÞ (7.6c)

(c) Compute the correlations between the scores

r1�2 5 correlation of s1 and s2 (7.7a)

r1�3 5 correlation of s1 and s3 (7.7b)

r2�3 5 correlation of s2 and s3 (7.7c)

(d) Update the estimates of the U vectors

U1 5Y1
tðr1�2s2 1 r1�3s3Þ (7.8a)

U2 5Y2
tðr1�2s1 1 r2�3s3Þ (7.8b)

U3 5Y3
tðr1�3s1 1 r2�3s2Þ (7.8c)

The sequence of steps is then repeated, using the U vectors at the end of each iteration
as inputs into the next. This is repeated until the changes in U (or correlations r) do not
change within some desired tolerance level. It is then possible to test the significance of
the observed correlations using permutations.

USING PLS TO COMPARE PATTERNS OF COVARIANCE BETWEEN
BLOCKS ACROSS GROUPS

PLS is usually used to examine patterns of covariances between blocks of variables
measured in a single sample, but it can also be used to compare those covariances
between samples, as in a comparative analysis of geographic variation. Such comparisons
rely on the same logic (and methods) used in comparative analyses of regression equa-
tions or PCs because in all of these we are asking if the biologically corresponding vec-
tors point in the same direction. To answer that question, we can compute the angle
between comparable SAs, then test it statistically (using, for example, a bootstrapping
procedure). In a similar fashion, we can also compare SAs to PCs, asking whether the
major dimension of covariance between blocks is equivalent to the dominant dimension of
variation within blocks. For example, when our data come from an ontogenetic series, the
major dimension of variance within each block is likely to be the ontogenetic vector, and
the major dimension of the covariance between blocks may be the developmental covari-
ance between the two blocks. Comparing SAs to PCs can be especially useful for under-
standing causes of variance when PLS indicates a significant relationship between
morphology and some collection of environmental variables. That same relationship
between morphology and the environment may also explain the dominant axis of mor-
phological variation.
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COMPARING PLS TO OTHER METHODS

PLS resembles several other methods, including simple and multiple regression, princi-
pal components analysis (PCA), and canonical correlation analysis (CCA). PLS can also be
used to discriminate between groups, making it an alternative to discriminant function
analysis (DFA) and canonical variates analysis (CVA). The relationship between methods
is complicated because PLS can be approached from multiple perspectives, but we focus
on PLS as solving one particular sort of eigenstructure problem and having the constraints
on the directions of the SAs noted above, i.e. that they be mutually orthogonal. Below we
briefly compare methods so that you can decide which is most useful for your purposes.

PLS Compared to Multiple Regression

Both PLS and multiple regression can examine the relationship between two multivari-
ate sets of variables, but they differ in two important respects. First, and most importantly,
PLS does not require that the variables in either block be uncorrelated with each other,
and works most effectively when they are not, whereas multiple regression has difficulty
determining the variance explained by highly correlated predictive variables. In PLS, the
correlations among the variables are thought to reflect their joint response to underlying
(unobserved) variables, often called “latent variables” (a concept frequently used in PLS).
To estimate a latent variable, it is important to have multiple observed variables because
their correlations are explained by their dependence on the latent variable. For example, to
measure the latent variable “climate” we would use multiple observed climatic variables
(e.g. maximum monthly temperature, minimum monthly temperature, maximum monthly
precipitation, minimum monthly precipitation, seasonality, etc.). The correlations among
them are explained by “climate”. Rather than exploring the structure of these measure-
ments within a block to extract that latent variable, PLS seeks the combination of the cli-
mate variables that maximally covary with the other block of variables � the linear
combination of climate variables most relevant for explaining the other block. These coeffi-
cients are called saliences because they indicate which variables in one block are most rele-
vant (salient) for explaining covariation with the other block. The ability to find that
combination is enhanced by having multiple correlated observed variables.

In striking contrast, the coefficients of a multiple regression express the dependence of
the dependent variables (e.g. shape) on one independent variable, with all others held con-
stant. Consequently, correlations between the independent variables are a problem for the
method. When the independent variables are correlated with each other, most of the vari-
ance in the dependent variables will be associated with one independent variable, the one
first entered into the model, leaving little to be explained by the others, as discussed in the
chapter on General Linear Models. Even though all the independent variables might affect
the dependent variables, only one might be accorded a high weight, making the others
appear to have trivial explanatory power. That is because they are explaining the residual
variance, i.e. the variance not already explained by the one with the large coefficient.
Multiple regression is thus poorly suited to cases in which the independent variables are
correlated with each other. In contrast, PLS is specifically intended for the case in which
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multiple variables (within each block) are measuring the same factor. The problem posed
by correlated independent variables in a multiple regression is sometimes solved by con-
ducting a preliminary PCA to obtain uncorrelated variables (the PCs), then regressing the
dependent variable (e.g. shape) on the PCs. As a result, the construction of independent
variables is determined only by the covariances among them, without considering their
relationship to the dependent variables. In PLS, the axes for both blocks are determined by
the covariances between the blocks, which can yield axes that need not correspond to the
PCs within blocks.

Another difference is that regression typically casts one set of variables as dependent
on the other, whereas PLS treats them symmetrically. That is, PLS does not assume that
one set of variables is independent and the other dependent. Both sets are treated as
jointly (and linearly) related to the same underlying causes. What makes the symmetry of
the method important is that (Model 1) regression is based on a model that assumes that
the independent variable is controlled and therefore all of its variation is explained by the
experimental manipulation; it is measured without unexplained variation (“error”). Hence
all the unexplained variance in the data is ascribed to the dependent variable. No such
model underlies PLS and so no error is ascribed to any variables (in either block). For this
reason alone, we would not expect to obtain the same coefficients from PLS as we obtain
from regression.

There is, however, a form of PLS more comparable to regression, PLS�Regression
(Wold et al., 2001). This method uses the basic machinery of PLS, the SVD of the cross-
block covariance matrix, R (Equation 7.1) as the initial step in the procedure. That first
step yields the pair of linear combinations, SA1, for the two blocks, plus the scores for the
paired SA1s. Then, instead of regressing the first block, Y, on the second, X, Y is regressed
on the vector obtained from the scores for X (which may be normalized or otherwise
weighted). Further details on this method are beyond the scope of this chapter; there are
several algorithms for the procedure as well as several methods for obtaining the vector of
scores for the X block (see Mevic and Wehrens, 2007). When the variables in the X block
(i.e. the predictors) are all uncorrelated, PLS�Regression will be equivalent to ordinary
least squares linear regression on those variables (Wold et al., 2001).

PLS Compared to PCA

PLS and PCA resemble each other in one important respect: both reduce the dimension-
ality of the data by extracting a set of mutually orthogonal axes. As you recall from
Chapter 6, PCs are extracted from a variance�covariance matrix (by eigenanalysis), pro-
ducing a set of mutually orthogonal dimensions (eigenvectors), ordered according to the
amount of variance each one explains. Similarly, PLS decomposes a matrix into mutually
orthogonal axes, ordered according to the amount of covariance between blocks explained
by each one. The most obvious difference is that PCA examines variation within a single
block of variables whereas PLS examines the covariation between blocks. Consequently,
one of the primary differences between PCs and SAs is that SAs, unlike PCs, come in
pairs. For each singular value there is a pair of axes that, taken together, accounts for the
patterns of covariances between blocks. But despite this obvious difference, both PLS and
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PCA impose a similar constraint on the analysis: both define axes to be mutually orthogo-
nal. Just as PC2 is defined to be orthogonal to PC1, SV2 is defined to be orthogonal to SV1.
This is important when biological factors are not orthogonal, which may be the general
rule. Even though the axes (both PCs and SAs) provide a useful, simplified space in which
to explore patterns in the data, the axes themselves, beyond the first, need not correspond
to any biological factors. It is likely that PC1 and SA1 have a biological interpretation
when they account for a very large proportion of the variance or covariance, but the
remaining axes are, by definition, constrained to be orthogonal to them, making their
interpretation more dubious. This same issue arises when using PCA for explanatory or
even comparative purposes (see Rohlf and Corti, 2000; Houle et al., 2002; Angielczyk and
Sheets, 2007).

Another important similarity between the methods, which also should inspire a cau-
tious approach to interpreting results, is that PLS extracts linear combinations of variables
(like PCA) but the relationship between blocks may be non-linear. In such cases, the first
dimension may represent the dominant linear trend, and others represent orthogonal
deviations from linearity. Thus, we would need to interpret SV1 together with SV2 to
understand the relationship between the two blocks, recognizing that a single non-linear
factor accounts for both. Of course, the issue of linearity is also important whether we are
analyzing the data by PCA/PLS, by regression, or by the method discussed in the follow-
ing section, CCA. However, most workers recognize that linearity is an important assump-
tion of regression; non-linearity might not seem so important in studies using PCA or PLS
because neither method is explicitly based on a linear model so the impact of non-linear
relationships among variables might not seem to violate assumptions of the method.

Unlike the situation for PCA, there is no analytic statistical test of the significance of
SAs, meaning that there is no analytic test for the difference in length between SA1 and
SA2, and so forth. However, as mentioned above, resampling-based approaches can be
applied to test the hypothesis that SA1 (and succeeding SAs) explain more covariance
than expected by chance. A permutation test, discussed by Rohlf and Corti (2000), deter-
mines whether the singular values are larger than could be produced by a random permu-
tation of associations among variables between blocks (keeping within-block associations
intact).

PLS Compared to Canonical Correlation Analysis

Canonical correlation analysis examines the correlation between blocks of variables and
it closely resembles multiple regression although, as in the case of PLS, CCA treats both
blocks symmetrically. CCA thus differs from multiple regression and resembles PLS in
that neither block is construed as comprising a block of causal variables with the other
comprising the responses. One important difference between CCA and PLS is the quantity
maximized by the two procedures. CCA seeks pairs of axes (canonical axes) that are maxi-
mally correlated with each other. That is, CCA seeks an axis, a linear combination of vari-
ables, from one block that is maximally correlated with a linear combination of variables
from other block. In contrast, PLS seeks axes that maximally account for the covariance
between blocks (for a more detailed comparison between CCA and PLS, see Rohlf and
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Corti, 2000). Another important difference is that the coefficients produced by a CCA are
interpreted like partial regression coefficients, meaning that (as discussed above), each
coefficient indicates the contribution made by an independent variable when all others are
held constant. In this way, CCA, like multiple regression, is not well-suited to analyses in
which the variables within a block are correlated. As discussed above, constructing axes
that are mutually uncorrelated with each other within each block by a preliminary PCA
need not yield the same axes as those constructed by maximizing the covariances between
the two blocks.

PLS compared to Canonical Variates/Discriminant Analysis

PLS might not seem comparable to a CVA because PLS examines the relationship
between two blocks of variables whereas CVA discriminates between groups. However,
canonical correlation analysis and canonical variates analysis are closely related techniques
and PLS is related to both. PLS has been used to discriminate between groups, such as
between types of dementia (Gottfries et al., 1995) and even between years of a vintage port
wine (Ortiz et al., 1996). When used for purposes of discrimination, one block of variables
consists of codes that indicate an individual’s membership in a group. The resultant scores
can then be inspected to assess the separation between groups (Barker and Rayens, 2003;
Mitteroecker and Bookstein, 2011). The procedure for discrimination by PLS is equivalent
to the method introduced in the last chapter, the Between-group PCA, when shape is one
block and (normalized) codes for the groups are the other (Mitteroecker and Bookstein,
2011). This approach is particularly useful when the number of variables greatly exceeds
the number of individuals; under these conditions, the results of a CVA can be what looks
like very large differences between groups even when the “groups” are random samples
from a single population.

APPLICATIONS OF PLS

PLS can be used to address a large range of biological questions about the relationship
between shape and other variables. To exemplify some of these applications, we consider
two cases in which both blocks comprise shape data, but the questions asked about the
relationships between the blocks differ and some of the methodological details also differ.
We also consider several applications that relate shape to other variables, surveying sev-
eral studies to show the diversity (and treatment) of those non-shape variables.

Using PLS as an Exploratory Tool to Characterize a Population: The Anterior
Human Dentition

The forensic discipline of bitemark analysis has come under scrutiny (Rothwell, 1995;
Pretty and Sweet, 2001; Bowers, 2006; Pretty, 2006; NAS, 2009) due to a number of criminal
convictions based on bitemark analysis that were later overturned based on DNA evidence
(Bowers, 2006). Forensic identification of post-mortem victims based on the examination of
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dental records that incorporate detailed information about the entire dentition are effective
and non-controversial but, in bitemark analysis, only the incisal surfaces of the six anterior
mandibular and maxillary teeth (the biting dentition) typically leave an impression. In
assessing the effectiveness of bitemark evidence, Sheets et al. (in press) examined the pat-
terns of both variation in the positions of the incisal surfaces of the six anterior teeth, and
covariation in tooth position using 1099 three-dimensional scans of human dentitions.

These dentitions were digitized by a commercial laboratory as part of the process of
constructing occlusal mouth guards for patients drawn from a random sample of these
private clinical patients in the USA (all identifying personal information was stripped
from the records used, and IRB approval was obtained for this study). One of the goals of
this study was simply to document systematically the patterns of variation and covariation
in this relatively large sample. This simple documentation of the patterns was a task spe-
cifically called for in the 2009 report on forensic sciences (NAS, 2009), and is helpful in
assessing the strength of evidence linking a suspect dentition to a bitemark, particularly
with the substantial distortion of the impression produced by skin (Bush et al., 2011). This
was a “sample of convenience”, and some care is warranted in attempting to extend these
results to various human subpopulations.

On each scanned three-dimensional dentition, ten semilandmarks were placed along
the incisal surface of each anterior tooth (Figure 7.1). The data were then analyzed using
both PCA (Figures 7.2 and 7.3) and PLS (Figure 7.4). The results of the PCA are shown as
paired views, both frontal and occlusal, because there is substantial interest in the degree
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FIGURE 7.1 Occlusal and frontal views of three-dimensional scans of a cast made of a human dentition.
Semilandmarks were placed along the occlusal surfaces of the six anterior teeth in the maxilla and mandible.
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of variance present in the vertical direction in the human dentition and the impact of this
variance on the resultant bitemarks. PLS results are shown only in occlusal view. The first
11 SAs were judged to be significant based on permutation test, but the first four explain a
total of 81.9% of the covariation. Thus, the remaining seven axes are statistically signifi-
cant, but explain little of the covariation.

Clearly identifiable patterns emerge from both PCA and PLS (Tables 7.1 and 7.2), with
the predominant feature in both being the contrast between relatively wide versus rela-
tively narrow arches. Not surprisingly, these show a strong covariance between upper and
lower dentitions. The second PC and SA are also highly similar, showing the relative
displacement of the central and lateral incisors. Because this sample was obtained from

FIGURE 7.2 PCs 1�6 (A�F) of the maxillary dentition in frontal and occlusal views (see Figure 7.1). The data
for the PC axis variation are shown as floating gray crosses. The average dentition over the entire set is shown as
a series of black dots connected by solid lines along the incisal edges. The crosses indicate the pattern of differ-
ences for specimens with positive scores along the axis; specimens with negative scores would have the reversed
pattern. It should be noted that the data shown in Figures 7.2 and 7.3 are three-dimensional in nature and that
rotation in three-dimensional space permits a better understanding of the shape variance.
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patients being fitted for occlusal mouth guards in private dental practices in the USA, it is
probably biased toward individuals with relatively high levels of dental care.

Using PLS to Examine Morphological Integration and Modularity

One of the most promising applications of PLS is in studies of morphological integra-
tion and modularity (subjects covered in more depth in Chapter 12). Numerous studies,
especially of primates, use PLS for that purpose (e.g. Bookstein et al., 2003; Bastir and
Rosas, 2004, 2005, 2006; Bastir et al., 2005, 2007, 2008; Mitteroecker and Bookstein, 2007,
2008; Laffont et al., 2009; Gkantidis and Halazonetis, 2011). Here we focus on the covari-
ance between two parts of the rodent mandible. The rodent mandible has become a
favored model system for studies of morphological integration and modularity, and the
dominant hypothesis is that there are two modules, one comprising the tooth-bearing
region, the other the muscle-bearing region (e.g. Cheverud et al., 1991; Mezey et al., 2000;
Klingenberg et al., 2003). This hypothesis is shown in Figure 7.5. It may be evident that it
is difficult to define these two regions precisely because the incisor extends well into the
muscle-bearing region and the dominant muscles for biting and chewing, the lateral,

FIGURE 7.3 PCs 1�6 (A�F) for the mandibular dentition, in occlusal and frontal view.
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medial and superficial masseters, extend well into the tooth-bearing region. Nevertheless,
the two parts are commonly divided along the line shown in Figure 7.5, and are hypothe-
sized to be both developmental and functional modules.

The mandible is a single skeletal element and it is measured as a single configuration of
landmarks (and semilandmarks). To analyze its integration we can either retain the infor-
mation about the interconnections between the two parts within the whole, or we can treat
each module as a single configuration of its own and analyze the relationship between the
two configurations (Klingenberg, 2009). The major methodological distinction between the
two approaches is the first approach involves superimposing the entire configuration,
whereas the second involves superimposing each block separately. The major conceptual
distinction between the two approaches, as discussed by Klingenberg is that the first
explicitly considers information about the connection of the subsets, which is important
when some of the covariation between subsets arises from variation in their connections
rather than from simultaneous variation within the two subsets. The second approach
ignores the anatomical connection of the two subsets, including information about the rela-
tive sizes and positioning of the parts, focusing on the covariation due to joint changes of
shape within each subset.

In either case, our first objective is to measure the covariance between the two putative
modules. Because the hypothesis of modularity predicts that the two parts will not be

FIGURE 7.4 The first four SAs (A�D), showing patterns of covariation in the maxillary and mandibular denti-
tion (occlusal view with maxilla at top).
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correlated, we then need to determine whether the observed covariance is lower than we
would obtain between two randomly partitioned subsets of landmarks that have the same
number of landmarks as the a priori partitions. Our second objective is to describe the
dominant axes of covariation between the two modules should they covary.

Using the first approach, we obtain an RV coefficient which, as you recall, is analogous
to an R2, of 0.506. For an R2, this is a very high value; not surprisingly, the null hypothesis

TABLE 7.1 Variance Explained By Each PC Axis of the Human Dentition Data Set, With a Description of
the Pattern Implied By the Axis

PCA

Axis

Percent of Variance Pattern Implied By the Axis

1 Mandible: 54.0
Maxillary: 39.8

Arch width-positive scores indicate a relatively wide arch, negative scores
indicate a relatively narrow arch, in both maxillary and mandible

2 Mandible: 8.8
Maxillary: 12.6

Positive scores indicate a labial displacement of both central incisors, relative to a
lingual displacement of both lateral incisors, with a slight labial shift of the
canines in the maxillary

3 Mandible: 6.7
Maxillary: 7

This axis implies a pattern of left�right asymmetry in both maxillary and
mandible, although the specific details of the asymmetry differ. In the mandible,
there is a “bulge” of all teeth to one side, whereas in the mandible, all 4 incisors
shift in a line relative to the canines

4 Mandible: 4.2
Maxillary: 5.2

Asymmetry in the location of the central incisors in the mandible. One shifted
lingually and the other labially, while the adjacent lateral incisors shift in the
opposite directions. In the maxillary, this is a different pattern, a labial shift of
one central incisor with an accompanying lingual shift of the lateral incisor and
canine

5 Mandible: 3.9
Maxillary: 4.8

In the mandible, this axis implies opposing lateral and lingual shifts of the central
incisors, while in the maxillary, this axis describes outward shifts of both canines

6 Mandible: 3.6
Maxillary: 3.8

Opposing lingual�labial shifts of the canines and lateral incisors appear in the
maxillary, while asymmetric lingual�labial shifts appear in the two lateral
incisors of the maxillary, with some changes in the orientation of one canine

Note that the descriptions are stated in terms of positive scores, negative scores simply reverse the pattern.

TABLE 7.2 Covariance Explained by Each PLS Axis of the Human Dentition Data Set, with a Description
of the Pattern Implied by the Axis

PLS

Axis

Percent of

Covariance

Pattern Implied By the Axis

1 65.4 A contrast between wide and narrow arches

2 7.2 Strong labial displacement of both central incisors of both the upper and lower
dentition.

3 5 Strong left-right asymmetry pattern

4 4.3 Opposing tilts of the central incisors and lateral incisors of both maxillary and
mandible, and minor amounts of rotation of the canines
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of independence between blocks is rejected (P, 0.001) by a permutation test. SA1 explains
46.6% of the covariance between blocks and the correlation between scores is 0.93. The
dominant axis of covariation between the two blocks is shown in Figure 7.6A, which can
be compared to the dominant axis of variation (PC1) of the mandible (Figure 7.6B). Doing
the analysis the second way isolates the covariation due specifically to joint changes in
shape within each subset, produces a lower RV of just 0.302, which is still a moderately
high value for an R2, and this too is statistically significant (P, 0.001). SA1, however,
accounts for just 40.1% of the covariance and the correlation between the scores is 0.74.
The pictures (Figure 7.7) show the dominant axis of covariation between the two blocks,
the paired SA1s.

Using PLS to Relate Shape to Ecological Factors

Several studies have used PLS to analyze the relationship between shape and environ-
mental factors, both abiotic and biotic (Fadda and Corti, 1998; Ruber and Adams, 2001;
Monteiro et al., 2003; Arif et al., 2007; Pulcini et al., 2008; Fornell et al., 2010; McGuire,
2010; Noback et al., 2011). We single out three of them to show how such analyses can be
conducted, focusing on the environmental variables.

Cichlid Body Shape and the Biotic Environment: The Relationship Between Body
Shape and Trophic Morphology

Ruber and Adams (2001) investigated the relationship between body shape and trophic
morphology in Lake Tanganyika cichlids. These cichlids are noted for their morphological
diversity, and phylogenetic studies have revealed extensive convergence in trophic specia-
lizations, especially the specializations of their dentitions. Ruber and Adams asked
whether other body shape covaries with trophic morphology, specifically, with the special-
ized dentitions. They sampled body shape by 14 landmarks on the external morphology of
these fishes from 17 populations from four lineages, which were divided into phylogeo-
graphic clades. The landmarks comprise the first block of data, the second consists of four
morphological variables that previous studies had shown to be correlated with trophic
morphology: (1) gape width; (2) interorbital width; (3) oral tooth counts of all erupted
teeth on the premaxillary; and (4) dental bones. Thus, the morphological variables are
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FIGURE 7.5 Subdivision of the mandi-
ble into two putative functional and devel-
opmental modules.
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proxies for the “trophic environment”. To determine whether these trophic variables are
related to shape, Ruber and Adams used PLS and found that specimens with low tooth
counts and a small gape have relatively elongated heads and a forward directed snout
whereas those with high tooth counts and a large gape have deep heads and a ventrally
directed snout. Using phylogenetic generalized least squares (PGLS) analysis, Ruber and

FIGURE 7.6 SA1 for the two subdivisions of the man-
dible, analyzed as two parts of a whole. (A) SA for the
two mandibular blocks (Block 1 is shown in black, Block
2 in gray); (B) PC1 for the mandible as a whole.

FIGURE 7.7 SA1 for the two subdivisions
of the mandible, analyzed as two separate
parts.
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Adams found a statistically significant relationship between body shape and trophic mor-
phology, taking phylogeny into account.

Human Nasal Cavity Morphology and the Climatic Environment: Temperature and
Vapor Pressure

The functional morphology of the nasal cavity morphology was investigated by Noback
and colleagues (2011). The nasal cavity functions to humidify and warm the air before it
reaches the lungs, and the question posed by this study is whether humans that live in
more demanding environments (with lower temperatures and higher aridity) have nasal
cavities that enhance turbulence and air�wall contacts to improve the conditioning of the
air. Noback and colleagues recorded three-dimensional coordinates of 21 landmarks on
the bony morphology of the nasal cavity of 100 individuals, from five climatic zones
(selecting specimens to represent indigenous populations of the area rather than those
affected by modern western lifestyles or health care). They examined the relationship
between nasal cavity shape and indicators of temperature and aridity, which include
monthly observations of temperature and vapor pressure (obtained from KNMI Climate
Explorer) from 1901 to 2006 for the geographical locations (or region) of each individual
cranium. The data on climate may not represent the climatic conditions over the past thou-
sands of years during which the populations diversified but it is the most comprehensive
and detailed database on climate available. The climate variables include (1) mean yearly
temperature, (2) coldest monthly temperature, (3) warmest monthly temperature, (4) mean
yearly vapor pressure, (5) lowest monthly vapor pressure and (6) highest monthly vapor
pressure. The shape data comprise the means for each of the 10 populations.

SA1 of the environmental block is a general climatic factor, with all climatic variables
loading positively and nearly equally on that axis, with the two extremes being the coldest
and driest versus warmest and most humid. SA2 for the environmental block is a contrast
between temperature and vapor pressure (i.e. warm and dry versus cool and humid). SA1
explains 94.3% of the covariation between nasal cavity shape and climate, yielding a corre-
lation of 0.77 between the scores on the paired SA1. SA2 explains only 5.1% of the covaria-
tion between shape and climate, yielding a correlation of 0.55 between the two blocks.
Although the covariances explained by both SA1 and SA2 are statistically significant based
on permutation tests, only SA1 is interpreted because it explains vastly more of the covari-
ance between the blocks. The shape changes associated with climate are found in the nasal
aperture, upper nasal cavity and nasopharynx. Populations from cool dry climates differ
from those from warm humid climates by relatively higher and narrower nasal aperture, a
relatively high and narrow upper nasal cavity and a shortening of the nasopharynx with
an increase in the relative length of the posterior cavum length. The authors conclude that
the morphology of the bony nasal cavity appears to be associated mainly with temperature
and the nasopharynx with humidity, with the changes in shape being consistent with
increased contact between air and mucosal tissue in cold, dry climates (increasing turbu-
lence during inspiration and increasing the surface area to volume ratio in the upper nasal
cavity). They also recognize that the shape differences are modest and that populations
overlap, perhaps suggesting that the shape of the nasal cavity represents a compromise
and/or that nasal cavity morphology lacks extreme specializations that would reduce the
versatility of a generalist, mobile species.
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Environmental Correlates of Geographic Variation in Skull and Mandible Shape of a
Rodent, the Punaré Rat (Thrichomys apereoides)

In an investigation of the environmental sources of geographic variation in an echimyid
rodent sampled from Ceará, Paraı́ba, Pernambuco, Alagoas, Bahia, Goiás and Minas
Gerais in Brazil, Monteiro and colleagues (2003) examined the relationship between skull
and mandibular shape and a collection of environmental variables, including geographic,
climatic and biotic environmental variables. In this region, increases in latitude and longi-
tude are associated with increases in altitude and rainfall and decreases in mean annual
temperature and human density; moreover, the vegetation changes from the arid caatingas
to the cerrado savannas. The environmental block comprises geographic variables (1) lati-
tude and (2), longitude and (3) altitude plus the climatic variables (1) mean temperature
and (2) rainfall, and two biotic variables, (1) human population density and (2) vegetation
type (a categorical variable). The environmental data were obtained from the Enciclopédia
dos Municı́pios Brasileiros. The skull was measured in three views (dorsal, ventral and lat-
eral) and the mandible was measured in lateral view.

SA1 explained from 69% to 90% of the covariation between shape and the environment.
When summarizing the results, we focus on the two views for which the association
between geographic variation shape and the environment is statistically significant. For
the ventral view, the environmental SA1 represents a contrast between latitude, longitude,
altitude, versus vegetation type and human density. With increasing scores (towards the
south), snouts shorten and narrow relative to the skull, jugals become relatively shorter
and the tympanic bullae and foramen magnum reduce, plus there are more localized
changes in basicranial bones. The distribution of the scores for shape SA1 on the environ-
mental SA1 suggests an environmental gradient from north to south, but shape appears to
follow that gradient only from north to the most northern of the southern populations.
The southern populations show increasing scores on the environmental SA1 but the scores
are nearly constant on the shape SA1 (with the exception of one population from Goiás).
For the lateral view, the environmental SA1 represents a contrast between latitude, longitude,
altitude and rainfall versus temperature, vegetation type and human density. The associated
shape changes include a relative shortening of the snout and brain case, a decrease in relative
length of the jugal plus a general dorsovental shallowing of the skull. The scores on the paired
SA1 suggest two clusters of populations, northern and southern; the northern populations
vary little along either the shape or environmental SA1 whereas the southern populations,
which have higher scores on the shape SA1, vary along the environmental SA1 but not along
shape SA1.
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C H A P T E R

8

Statistics

Organisms vary for reasons beyond our control and often beyond our understanding.
Variation is of obvious biological importance because evolution could not occur without it,
but variation is also a source of frustration for biologists, as evident in what has been
termed the Harvard Law of Biology: “under the most carefully controlled conditions, bio-
logical material does whatever it damn well pleases” (quoted by Ellen Larsen [2005,
p. 115], in a book entirely devoted to the subject of variation [Hallgrı́msson and Hall,
2005]). Because organisms, even when reared under carefully controlled conditions, vary in
the outcome of development, we cannot assume that all those outcomes are due to the treat-
ment that we applied experimentally. The problem of interpreting experimental outcomes
is obviously much more difficult when nature did the experimenting, not us. Given that
there will always be variation that we cannot explain, we cannot safely ascribe all experi-
mental outcomes, whether the experiments are controlled or natural, to the treatments. This
inexplicable variation is the “error” term in statistical analyses � any variation that we can
explain is not error so long as the factor explaining it is included in our statistical model.

Variation further complicates drawing inferences about the experimental results
because we rarely, if ever, measure every single individual in the population of interest.
Almost always we instead draw a sample from that population and hope to infer some-
thing about the population from the sample. For example, if our experiment is run in the
laboratory, we are rarely asking questions about the response of our particular laboratory
population to the specific treatment that we applied. Should we give some mice liquid
diets and others regular laboratory pellets and measure their jaws to see the impact of die-
tary consistency on their jaws, we are not asking whether these particular groups of mice
differ. Rather, we want to know if mice, more generally, will differ in their jaw morpholo-
gies because of differences in dietary consistency. Similarly, when we analyze natural
populations, we are rarely interested solely in the specific organisms that we measure, we
want to generalize from those samples to the population as a whole. For example, we do
not ask whether adult chipmunks (Tamias alpinus), collected between 1911 and 1919,
whose skulls are contained in the mammal collection of the Museum of Vertebrate
Zoology, vary in jaw shape because they vary in size, or if these particular chipmunks are
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sexually dimorphic in jaw shape. Instead, we want to generalize from that sample to
T. alpinus. That concern for generality motivates statistical analysis because we would not
need statistical tests if we cared only about the particular organisms that we’ve observed.
We could easily determine if their means differ in whatever variables interest us � we’d
just measure those individuals, calculate the mean of each sample and look at the num-
bers. It is precisely because we want to make inferences about the populations from which
the samples were drawn that we need statistical methods of inference.

This chapter presents an introduction to formulating and testing hypotheses. We will
focus on two simple hypotheses: (1) adult T. alpinus vary in shape because they vary in size;
(2) adult T. alpinus are sexually dimorphic in shape. In the next chapter, we will test the more
complex hypothesis that adult T. alpinus are sexually dimorphic in shape, controlling for
size, i.e. they differ in shape when compared at the same size as well as other complex
hypotheses. In this chapter, we also restrict ourselves to balanced designs, meaning that our
sample sizes are equal in all groups which, in the case of an analysis of sexual dimorphism, a
balanced design means that we have equal numbers of males and females. In the next chap-
ter, we consider unbalanced designs, i.e. the case in which groups differ in sample sizes.

In general outline, the first step in any statistical analysis is to turn the biological
hypothesis into a formal statistical model. Then the coefficients of that model are esti-
mated, and the model is tested for its statistical significance. To explain these steps, we
will consider our first example, the biological hypothesis that chipmunk jaw shapes vary
because of variation in size. An important distinction between that biological hypothesis
and our statistical model is that our mathematical model says nothing about causality.
Instead, the model says that we can predict one variable (shape) from another (size). Based
on the good fit of our model to the data, we might conclude that size predicts shape and,
in light of that, we might be tempted to conclude that size explains shape. However, even
if the model fits well, size might not be a cause of shape for at least two reasons. First, size
is not a process. In the context of developmental biology, we can explain size in terms of
the proliferation of cells that add tissue to a structure. Because growth rates vary over the
organism, cell proliferation (in conjunction with cell death, cell differentiation, deposition
of an extracellular matrix, etc.) produces changes in shape. In this context, saying that size
“explains” shape does not mean that size itself causes shape; rather, it means that we are
using “size” as shorthand for all those developmental processes that jointly alter size and
shape. Second, even if size predicts shape, we cannot infer that it actually causes shape
because we have not manipulated size and determined that those manipulations affect
shape. If the model fits the data, what we have demonstrated is that the relationship
between size and shape is predicted by a particular mathematical model.

We begin with the formulation of the model for the simple bivariate case in which we
have one dependent variable (Y) and one independent variable (X), each of which is measured
on N individuals. The model is the equation of a straight line, hence the term “linear
regression”. We are fitting the equation of a straight line to the data to find the coefficients
that best predict shape from values of the independent variable (e.g. size). More specifi-
cally, we are trying to find the best estimates of the coefficients m and b of the equation:

Yi 5mXi 1 b1 εi (8.1)
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where Yi is the dependent variable measured for the ith specimen, m is the slope of the
line, b is the Y-intercept of the line, and εi is “error” (the variation in Y not explained by
X). Our objective is to estimate m and b and then to determine whether they are statisti-
cally different from zero. This is the model for any hypothesis in which the predictor is a
continuous variable. Size exemplifies a continuous variable because there is always a size
between any two others. In the case of categorical factors, such as the other factor that we
will consider (sex), we cannot find values between any two of them. There are no values
between “male” and “female”.

When the assumption of linearity holds, our statistical analysis can tell us if Y is only
weakly dependent on X � meaning that knowledge about X does not enable us to predict
Y. It is also possible that the relationship of the two variables is statistically significant, but
that m is such a small number that the effect of X on Y is biologically trivial. It may be a sta-
tistically significant relationship, in that it is stronger than expected by chance, but it might
not be biologically significant. Recognizing this distinction is important, because statistical
significance is a matter of sample size and the power of a test. With very large samples, or
very powerful tests, we might have little difficulty rejecting the null hypothesis. However,
if X accounts for very little of the variation in Y, X provides little biological insight into Y.
We therefore need to pay as much attention to the explanatory power of X and to the mag-
nitude of its impact on Y as to the statistical results. The fraction of the variance in Y
explained by X (and the model) provides the needed information about explanatory power.

As mentioned above, when the assumption of linearity holds, our statistical analysis can tell
us whether we can predict Y from X. The reason for emphasizing this assumption is that a
strong but non-linear relationship might look like a weak linear one. Consequently, we
might end up rejecting our biological model because the statistical analysis suggests a weak
relationship between variables, but the relation is actually strong but not linear.
Fortunately, in some cases of a non-linear relationship between the variables, it is easy to
transform the independent variable to make the relationship linear. For example, a number
of studies of ontogenetic allometry use the logarithm of centroid size, rather than centroid
size itself, as the independent variable. That transformation is useful when most of the
shape change occurs over small values of X, such as when most shape change occurs early
in ontogeny (as it often does). We should note that it does not matter whether the logarithm
is taken to base 10 (log) or base e (ln) because these differ only by a constant, i.e. log(X)5
log(e) ln(X)5 0.4329 ln(X). In other cases, other transformations of X (such as other trigono-
metric functions) might do a better job of linearizing the relationship between variables.

In a moment, we will present the equations that provide the best estimates of m and b,
but to explain why they are considered “best” we first need to consider how that decision
could be made, in general. The standard approach for deriving the best estimator is to
choose an error function. By minimizing that error, we find the optimal values for the para-
meters. A least squares analysis, as the term suggests, uses the sum of squared residuals
as the error function, so that is the function minimized. We then express the relationship
between that error term and the regression model:

XN

i51

ε2i 5
XN

i51

ðyi2mxi2bÞ2 (8.2)
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where xi5Xi2 ,X. (the difference between an observed value of Xi and its expected
value ,X. , which is the sample mean) and yi5Yi2 ,Y. (the difference between an
observed value of Yi and its expected value ,Y. ), xi and yi are called centered versions of
the original variables. Thus, we are summing residuals, or deviations from expected
values, over all N individuals in a population. By minimizing this function, we will obtain
the best estimates for m and b.

To find the values of m and b that minimize the sum of squared residuals, we set the
derivative to zero (for both m and b). As you recall from calculus, the derivative of a func-
tion is zero at the maximum and minimum. We then solve for m and b. Using this optimi-
zation method, the equation for the slope, m, can be written as:

m5

P
xyP
x2

(8.3)

which is the sum of the products of the deviations divided by the sum of the squared
deviations of the X values (each sum is taken over all individuals). In other words, the
slope is the ratio of the deviations of Y to the corresponding deviations of X. When the
corresponding deviations are identical, the slope is one; when the deviations of Y are a
consistent multiple of the deviations of X, the slope will be that multiple.

Substituting the Xi2 ,X. for xi and Yi2 ,Y. for yi allows us to compute m directly
from the observed values. The sum of the products can be written as:

X
xy5

X
ðXi 2 ,X. ÞðYi 2 ,Y. Þ (8.4)

which can be simplified to:

N
X

XiYi 2
X

Xi

X
Yi (8.5)

After applying a similar substitution and simplification to the sum of the squared devia-
tions, we can write:

m5
N
PN

i51 XiYi

� �
2

PN
i51 Xi

PN
i51 Yi

� �

N
PN

i51 X
2
i

� �
2

PN
i51 Xi

� �2 (8.6)

Now that we have an expression for the slope, we can solve for the intercept, b, and
complete the equation for the regression. When b5 0, ,Y. 5m,X., so we can calculate
b from the observed values, Xi and Yi, and the sample size, N:

b5 ,Y. 2m,X.5

PN
i51 Yi 2m

PN
i51 Xi

N
(8.7)

In addition to an estimate of the value of m, we will also need measures of the uncer-
tainty of that estimate. These measures will be used to test whether m is significantly dif-
ferent from zero (because if we cannot say that, we cannot claim that Y depends on X),
and to test whether the value of m differs between samples (whether the relationship
between X and Y is different).
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Before we derive the measures of uncertainty, it will be useful to introduce some short-
hand notation. The sums of squares of the deviations xi and yi will be:

sxx 5
XN

i51

x2i (8.8)

and

syy 5
XN

i51

y2i (8.9)

Similarly, the sum of the products of the deviations will be:

sxy 5
XN

i51

xiyi (8.10)

In testing whether the regression is significant, it is important to keep in mind that we are
asking whether the relationship between X and Y explains a significant proportion of the vari-
ance in Y. If we knew the values of the error terms, εi, we could compute their variance and
use those estimates to determine the proportion of variance in Y that is explained by the
regression of Y on X. More often than not, εi are unknown, so we need a different approach.

What we can do is to compute an F-ratio from the information that we have. F is a ratio
of variances (or mean squared deviations) that are sums of squared deviations divided by
the appropriate degrees of freedom for the terms in the model. The degrees of freedom
of the model are simply equal to the number of estimated or fitted parameters in the
model. The ratio of the sum of squared deviations explained by the regression is S2XY=SXX:
This has one degree of freedom, so the proportion of the variance explained is also
S2XY=SXX: Recall that the slope is sXY/sXX, so the explained variance can also be written as
m � sXY. The unexplained or residual sum of squared deviations is sYY2m � sXY, which has
N2 2 degrees of freedom, so the unexplained variance is (sYY2m � sXY)/(N2 2). F is the
explained variance divided by the unexplained, so F is (N2 2)m � sXY/(sYY2m � sXY) with
1 and N2 2 degrees of freedom. The corresponding p-value indicates the likelihood that
such a high F is due to chance, meaning that such a large proportion of the variance in Y
explained by the regression of Y on X is due to chance.

THE CORRELATION COEFFICIENT

The correlation coefficient (r), which ranges from minus one to one, expresses the
strength of the linear relationship between X and Y. Its squared value (r2), which ranges
from zero to one, indicates the fraction of the variance in Y that is explained by X. The
expression for r2 is:

r2 5
s2XY

sXXsYY
(8.11)
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It is common to regard high r2 values as indicating high explanatory power of the
model. However, even high values of r2 need not be statistically significantly greater than
zero. For that reason we need to test the statistical significance of r2, which we can do
(assuming normality of the residuals) using the expression:

z5
1

2
in

ð11 rÞ
ð12 rÞ

� �
(8.12)

which is a normally distributed variable, with variance equal to 1/(N2 3), where N is the
sample size (see the derivation in Freund and Walpole, 1980), a calculation that assumes
that the residuals are independent and normally distributed. So, based on an analytic
model of the distribution of r values, we can test whether or not the variance explained by
the model is larger than we expected by chance.

The other approach to testing the significance of an observed r value is to use a permu-
tation test of the significance of the regression, an approach which dates back to Fisher
(1935). The null hypothesis we would like to disprove can be stated as:

H0: The variance explained by this model for this particular data set is no greater than might occur by
chance, meaning that there is no association between the X and Y values that differs from what we might
expect to occur randomly.

This hypothesis contains a statement about the exchangeability (Anderson, 2001b) of the
X and Y variables in our data set, namely, that the relationship between X and Y is
exchangeable. That is because, if the null hypothesis (H0) is true, if we randomly shuffled
the Xi and Yi values to create new pairings, permuting the original data, we would expect
the model to fit the permuted data as well as it fits the original data. Because the relation-
ship between X and Y is exchangeable under H0, if H0 is true, the model should have the
same predictive power for the permuted data as it did for the original data. That allows us
to state a basis for rejecting the null hypothesis: if we form a large number of permuted data
sets, we can determine how many of them have as large an r value as the original data set
did. If only 3% of the permuted data sets have as large an r value as the original data
set does, we can use this observed 3% rate to claim that there is only a 3% chance that the
observed r values could have arisen from a randomly permuted set of data. Permutation
methods are discussed in more detail later (see the Appendix of this chapter and the discus-
sion of permutations in the next chapter). But it is important to note that the permutation
method used here does assume that the residuals are independent of one another, just as
the analytic model did. The permutation assumes that the residuals also came from the
same distribution, but does not require that the distribution be normal, a difference from
the analytic model discussed earlier.

MULTIVARIATE REGRESSION

To apply this theory to shape we need to extend it to the multivariate case. Our depen-
dent variable, for the case of two-dimensional data consisting solely of landmarks, is a vec-
tor with 2K2 4 components. That number will need to be adjusted for three-dimensional
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data and for data consisting of landmarks plus semilandmarks, but for the remainder of
this discussion we will mention only the two-dimensional landmark case. The adjustments
are straightforward except that, in the case of landmark-only data, the dimensionality of the
data equals the number of partial warps (including the two uniform components), which
will not be the case for data that include semilandmarks as well as landmarks. That distinc-
tion, however, is not important when using permutation or bootstrap methods based on
Procrustes distances, as we will see later. Regression models can be framed in terms of par-
tial warp scores or principal component scores or coordinates of landmarks because all the
mathematics involved is linear so a rotation of the data will not alter the answers, so long as
the mathematics is done correctly.

To regress shape on an independent (scalar) variable, we regress the shape data on the
independent variable. For example, suppose we have P partial warp and uniform compo-
nents, which we can write as a row vector {Y1, Y2, Y3,. . . YP}. Then the (linear) model for
the regression of that vector on a scalar (X) is:

fY1;Y2;Y3; . . .YPg5 fm1;m2;m3; . . .mPgX1 fb1; b2; b3; . . . bPg1 fε1; ε2; ε3; . . . εPg (8.13)

where {m1, m2, m3,. . . mP}, {b1, b2, b3,. . . bP} and {ε1, ε2, ε3,. . . εP} are vectors of slope and
intercept coefficients and residuals, respectively. Although this expression looks far more
complicated than the one for a bivariate regression, it actually is not. In fact, we can deter-
mine the ith component of the slope and intercept terms using the same mi and bi values
that minimize the residuals in the corresponding bivariate model. Each observation Y is
now a vector, as are the slope, intercept and each of the errors.

Estimating slope and intercept coefficients is no more complex in the multivariate case
than it was in the bivariate case. But in one important respect, the analysis actually is
more complex � checking the assumption of linearity. There are at least two ways to check
this assumption for multivariate data, although neither is ideal. One is to look at the rela-
tionship between each individual component of shape and the independent variable, such
as by regressing each partial warp on size. If one or more exhibits a strong and highly
non-linear relationship, such as shown in Figure 8.1A, then it is unlikely that shape and
size are linearly related. This method for checking linearity is not ideal because it falls
back on inspecting multiple bivariate regressions when it is multivariate linearity that
really matters. Another approach is to estimate the Procrustes distance between each spec-
imen and the shape at the lowest value on the independent variable. Regressing that dis-
tance on the independent variable may show if that relationship is non-linear (as in
Figure 8.1B). If it is not, it is unlikely that shape and size are linearly related. This method
is again not ideal, because the Procrustes distance measures only the magnitude of the dif-
ference between each specimen and the reference, not its direction. Two specimens that
differ a great deal from each other in shape may be equally distant from the reference.
Despite the deficiencies of these two less than ideal methods, we can use them to check
whether it is unlikely that shape is linearly related to size. The results shown in Figure 8.1
both indicate a non-linear relationship of shape and centroid size, and both suggest that
shape might be linearly related to the log of centroid size. That linear relationship to the
log of centroid size is suggested by the shape of the curves because they depict a very
rapid change in shape relative to size over the smaller values of size. So we can try a log
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transform of centroid size, repeating the two analyses to check for linearity (Figure 8.2).
Both plots now suggest a nearly linear relationship between shape and log centroid size.
Thus, we would use log centroid size as our independent variable.

To this point, we have talked about the assumption of linearity as that is usually stated in
context of bivariate regression. However, multivariate studies make another assumption of
linearity, which is that all components of the dependent variable be linearly related to the
independent variable. In other words, we are assuming that all the components of shape are
linearly related to each other, as we have assumed they are all linearly related to the inde-
pendent variable. This assumption will not hold if some components of shape are linearly
related to the independent variable but some others are non-linearly related to it. The com-
ponents of shape cannot be linearly related to each other if different ones fit differently
shaped curves. Because this departure from the assumption of non-linearity is specific to
multivariate data, it may not be intuitively obvious what the assumption means. What it
means is that the slope of the relationship between shape and the independent variable is
constant � the values {m1, m2, m3,. . . mP} are not functions of the independent variable.

In some cases, such as in studies of ontogeny, the shape variable correlated with age
may change from age to age. If that is the case, we cannot model the ontogeny of shape by
a single vector of slope coefficients because that vector would change with time. The onto-
genetic trajectory of shape is then a curving path in shape space, not a straight line. The
assumption of multivariate linearity can be checked in two ways although, again, neither

FIGURE 8.1 Checking the
assumption of a linear relation-
ship between shape and the inde-
pendent variable: (A) using a
single variable plotted on cen-
troid size; (B) using the
Procrustes distance of each speci-
men from the shape having the
smallest size, plotted on centroid
size.
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method is ideal. One is to conduct a principal components analysis (PCA) of the data, and
check for a statistical relationship between multiple PCs and the independent variable
(Figure 8.3). In the example shown in Figure 8.3A, there is a substantial deviation from lin-
earity � not only is PC1 correlated with age (which is expected) but PC2 and PC3 also are,
with PC2 and PC3 describing the deviations from the linear trend represented by PC1.
The assumption can also be checked by regressing several shape variables on each other
(Figure 8.3B) because, if the relationship among these variables is non-linear, we must
reject the assumption of multivariate linearity.

When shape data violate the assumption of multivariate linearity, there is no easy way to
transform them. They are not individual variables that can be individually transformed
because all of them, taken together, represent a single variable � shape. If we log transform
some of the components, we thereby alter the meaning of “shape”. Also, whenever the
dependent variable is transformed, the error structure of the data is also affected. That is not
the case when the independent variable is transformed, because that variable is presumed
to be measured without error. The non-linear dynamics of the shape variable are not just a
nuisance, they are biologically interesting but they do complicate statistical analyses.

Presuming that the assumption of linearity actually is met, we can go forward with the
analysis and test the hypothesis that our independent variable predicts shape. The classic
analytic approach represents the variance (which includes total variance, the variance
explained by the model and the residual) by variance�covariance matrices instead of

FIGURE 8.2 Checking the
assumption of a linear relationship
between shape and the indepen-
dent variable: (A) using a single
variable plotted on ln centroid size;
(B) using the Procrustes distance of
each specimen from the shape hav-
ing the smallest size, plotted on ln
centroid size.
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scalar values. Because we are dealing with a multivariate system, the test for the signifi-
cance of the regression is different from the bivariate case. The classical, analytic multivari-
ate statistical approach uses Wilks’ Lambda, Λ, which is:

Λ5
detðΣPÞ
detðΣÞ (8.14)

FIGURE 8.3 Checking the assumption of multivariate linearity of the dependent variable: (A) using principal
components analysis; (B) using two shape variables on each other (the two uniform components).
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where ΣP is the variance�covariance matrix of the predicted values of Y at a value of X in
the data set, det is the determinant of the matrix, and Σ is the variance�covariance matrix
for the original set of variables (e.g. partial warp scores or principal component scores or
any other complete set of scores for our data). Wilk’s lambda can also be computed as a
function of the eigenvalues of the inverse of the variance�covariance matrix of the
residual (ΣR)

21 times the variance�covariance matrix of the predicted values (ΣP).
Approximations are available to convert the Λ value into an F-statistic or a χ2 value.
Several other conventional multivariate test criteria can also be used, including Roy’s max-
imum root test, Pillai’s trace, Hotelling�Lawley trace) (Rencher, 1995), all of which give
the same results when there is only one independent variable and the sample size is large.
When the sample size is small (relative to the number of landmarks), the authors’ experi-
ence is that Wilk’s Λ can substantially overestimate the variance explained by the regres-
sion model, perhaps due to difficulties associated with estimating variance�covariance
matrices at small sample sizes. The other analytic tests could be expected to share this
behavior. It is not clear what sample size must be used to obtain consistent results but the
general rule of thumb is that there should be five times as many observations as estimated
parameters. The number of parameters rises rapidly for landmark data, especially for
three-dimensional landmark data, and even more so for semilandmark data, making sam-
ple size a substantial concern. For that reason, results of these analytic tests should be
viewed with caution unless sample sizes are large relative to the number of parameters.

DISTANCE-BASED METHODS OF HYPOTHESIS TESTING

There is an alternative approach to testing statistical hypotheses, which uses variances
expressed in units of Procrustes distance rather than variance�covariance matrices of the
partial warp scores or other variables (Goodall, 1991). By this approach, we use the
Procrustes distance between each individual’s observed shape and its expected value
given that individual’s value on the independent variable. The summed squared
Procrustes distances give a measure of the variance in shape that is not explained by X.
Thus, it is a measure of the residual, i.e. the variance not explained by the regression,
because the distances being squared and summed are the deviations from the regression,
hence they are not explained by the model. This distance-based approach has the advan-
tage of expressing deviations in terms of the familiar (and meaningful) units of Procrustes
distance and it also has the large advantage of expressing variance as a simple squared
Procrustes distance � a scalar rather than a matrix. Using distance metrics in statistics has
proven quite useful in other contexts as well (e.g. Anderson, 2001a,b).

The generalized form of this test is an F-ratio of the variance explained by the regres-
sion model relative to that not explained by the regression model, in which the variance is
expressed as a summed square Procrustes distance. Goodall’s (1991) original derivation (to
be discussed later), was an F-test for the difference in the means of the two groups relative
to the variance within each one. The test does make restrictive assumptions about the vari-
ance at each landmark, specifically, that it is normally, independently and identically dis-
tributed at each landmark. Rather than use a test that depends on this restrictive model,
we can instead use permutation tests based on the concept of exchangeability of the
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independent variable, as discussed above in the context of a simple bivariate regression.
Under the null hypothesis that the dependent variable is uncorrelated with the indepen-
dent variable, the significance of the observed F-ratio (the mean summed squared
Procrustes distance explained by the model relative to the mean square residual expressed
in the same units) is tested by comparing that observed value to the distribution of F-ratios
produced via random permutation (discussed in greater detail, below). If the observed F-
ratio is extreme relative to that obtained from the permuted values (at some desired alpha
level), then the null hypothesis (i.e. that X is not a linear predictor of Y) may be rejected at
that alpha level.

Examples: Testing the Null Hypothesis that X is Not a Linear Predictor of Y

We test the null hypothesis that X is not a linear predictor of Y, using centroid size as
our X variable, for a sample comprising an ontogenetic series of Serrasalmus gouldingi, a
data set measured at 16 landmarks (the case shown above [see Figures 8.1, 8.2] when we
checked the assumption of linearity). The null hypothesis is thus that shape is unrelated to
size over ontogeny, i.e. that growth is isometric. If we can reject that null hypothesis, we
can say that shape is a function of size. We also test this same null hypothesis for a second
case, a sample of adult alpine chipmunks, T. alpinus, captured between 1911 and 1919
from an elevational transect through the Sierra Nevada mountains near Yosemite. This
second example differs from the first in that the sample comprises solely adults and also
because the data comprise 85 semilandmarks as well as 15 landmarks.

In the analysis of S. gouldingi, a regression of the full set of partial warps on the natural
log of centroid size yields a value of Wilk’s Λ of 0.006785 corresponding to an F-statistic of
47.05 with 28 and 9 degrees of freedom (P5 4.463 1027). Thus, it is highly improbable
that the null hypothesis is true; we would therefore reject it in favor of the alternative,
which is that shape is allometric, meaning that it changes as a function of size. However,
the sample size is fairly small (N5 38) and, as noted above, there is good reason to worry
about the reliability of the Wilk’s Λ statistic when the sample size is small. We could
instead use Goodall’s F-test, which determines the proportion of the shape variation that
is not predicted by size, summing the squared Procrustes distances between the observed
and expected shape for each individual, given its size. From that sum, we conclude that
27.66% of the shape variance is not explained by the regression. Thus, 100%2 27.66%5
72.34% of the shape variance is explained by size. We obtain an F-ratio of 94.199, with 28
and 1008 degrees of freedom (for numerator and denominator, respectively). From the tab-
ulated values of F, we would conclude that the probability of obtaining such an extreme
value when the null hypothesis is true is less than 0.00001. Considering the dubious
assumptions of this test, we can use permutations to determine the significance of the
F-ratio and, not surprisingly, only 0.1% of the F-ratios obtained by permutations are as
large as the one obtained from the data. Thus, we can reject the null hypothesis that shape
is unrelated to size over ontogeny of this species. The magnitude of this effect can be
appreciated visually by the depiction of the regression as a deformation (Figure 8.4). That
magnitude can be quantified by the Procrustes distance between the shapes at the lowest
and highest values of the independent variable, which is 0.21.
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In our second example, the null hypothesis is less obviously dubious because all indivi-
duals are adults and they are nearly the same size; centroid size in this sample ranges
from 69.54 to 76.24, with a coefficient of variation of just 2.1%. We first test the null
hypothesis that there is no relationship between size and shape for the 15 landmarks,
which makes it possible to use the multivariate tests (e.g. Wilks’ Λ) as well as Goodall’s F.
We then test the null hypothesis of no relationship between size and shape using the full
data set of 15 landmarks and 85 semilandmarks, which cannot be tested multivariately
because the number of coordinates (200) vastly exceeds our sample size (104). For the data
restricted to the 15 landmarks, we obtain a value for Wilks’ Λ of 0.5567, which yields an
approximate F-ratio of 2.38, with 26 and 77 degrees of freedom (for numerator and denom-
inator, respectively). The probability of obtaining an F-ratio this large, with those degrees
of freedom, is 0.002. Using Goodall’s F-test, the percent unexplained by the regression is
97.61, and the F-ratio is 2.49, with 26 and 2652 degrees of freedom; the probability of
obtaining an F-ratio this large, with these degrees of freedom, is less than 0.005. Because
the assumptions are so dubious, we use permutations to determine the significance of F.
In this case, 0.2% of the permuted values exceed the observed one, so we again conclude
that shape is allometric rather than isometric. The effect, as shown in Figure 8.5A, is subtle
so we exaggerate it 10-fold to make it visible. Given that these 15 landmarks provide so lit-
tle information about mandibular shape, especially the complex curvature of the jaw, we
redo this analysis including the 85 semilandmarks. Using Goodall’s F-test, we determine
that size does not explain 96.67% of the variation in shape and thus that it does explain
3.33% of the variation. Goodall’s F for this case is 3.51, with 196 and 19992 degrees of free-
dom; the probability of obtaining an F-ratio this large, with these degrees of freedom, is
less than 0.005. Using permutations instead to determine the significance of F, we find that
0.1% of the values for F obtained by permutation equal or exceed the observed one, thus
we again conclude that size has a statistically significant, if relatively small, impact on

FIGURE 8.4 The ontogenetic allometry of Serrasalmus gouldingi, depicted as a deformation.
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shape. Depicting that effect (Figure 8.5B), magnified fivefold, shows that the impact of size
is particularly pronounced on the curvature of the angular process, the depth of the molar
alveolus and the width of the condyloid process.

COMPARING TWO MEANS

A classic problem in statistics is to determine whether or not the mean value of a mea-
surement (or a set of one-dimensional measurements) in one group is different from that
of another group. These groups are distinguished because they differ in some discrete, cat-
egorical variable, such as a treatment that we applied to them, or some property such as
sex. In such cases, we cannot subdivide the classifying variable; there is no treatment
between the ones that we apply, nor is there a value for sex between male and female. In
some cases, the classifying variable is not necessarily discrete and categorical, but it is trea-
ted as if it were. For example, populations from different localities might be treated as cat-
egorically distinct even though there are geographical coordinates between any two sites.
Similarly, populations sampled at two different times might be treated as categorically dis-
tinct even though there is a date in between any two others.

The comparison between two groups that differ categorically can be expressed as a
mathematical model of the form:

Yi 5AðiÞ1B1 εi (8.15)

FIGURE 8.5 Allometry of Tamias alpinus (A)
based on 15 landmarks, result exaggerated fivefold;
(B) based on 15 landmarks plus 85 semilandmarks,
result exaggerated fivefold.
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where Yi is our response variable and A(i) denotes the group to which specimen i belongs,
B is the mean value of Y (computed over both the groups) and εi is the error term (i.e. the
residual). The response variable is often called a “factor” and the values on the factor are
its “levels”. For example, if we want to compare the adult height of males and females,
the two values for A terms would represent the two levels (male, female) on the factor
“sex”. The mean value of the first level (group 1) is A(1)1B, and that of the second level
is A(2)1B. Thus, the values for the two levels (A(i)) are deviations from the mean, and the
difference between the two group means is given by A(2)2A(1). Notice how similar this is
to the regression model above; not surprisingly, we can use regression to test for the dif-
ference in mean. We do this by “dummy coding” our groups and then regressing on the
dummy coded predictors. The dummy codes for this simple case, with two groups and
equal sample sizes, would consist of two codes, 1 for the members of the first group and
21 for the members of the second. This pair of codes makes the mean value over both
groups zero and the groups deviate by equal amounts from the mean. We can thus test
the null hypothesis that the deviation from the mean (the coefficients for Ai) is no greater
than zero. In the following chapter, we’ll see that this test for a difference in means is a
special case of what is known as the General Linear Model.

Testing the Difference Between Mean Shapes of Two Groups

The classical multivariate approach to testing for differences in the means of two groups
makes use of the null hypothesis H0: A(1)5A(2)5 0, meaning that the two groups have
the same mean. This has been tested using Hotelling’s T2 (a multivariate form of the com-
mon t-test) which is not conceptually different from the F-test used to test regression mod-
els. To calculate Hotelling’s T2, one first computes the pooled within group
variance�covariance matrix:

Σp 5Σr 5 ðn1Σ1 1n2Σ2Þ=ðn1 1n2 2 2Þ (8.16)

where n1 and n2 are the sample sizes of the two groups, and Σ1 and Σ2 are the within-
group variance�covariance matrices. This pooled within-group variance�covariance
matrix is also the variance�covariance matrix of the residuals, or the errors, because this
is the part of the variance not explained by the factor of the model. From this pooled esti-
mate, we can calculate a squared Mahalanobis distance between the means of the two
groups (Dryden and Mardia, 1998):

D2 5 ðAð2Þ2Að1ÞÞT
X21

r
ðAð2Þ2Að1ÞÞ (8.17)

From this we can compute an F-ratio

F5
n1n2ðn1 1 n2 2Q2 1Þ
ðn1 1 n2Þðn1 1 n2 2 2ÞQD2 (8.18)

where Q is the degrees of freedom per specimen Yi. The resulting statistic has an F distri-
bution with Q degrees of freedom in the numerator and n11 n22Q2 1 in the denomina-
tor. While this expression looks complex, the important aspect to realize is that it is
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essentially a ratio of the variance explained by the model, which is proportional to squared
difference in the means, and the residual or error variance, which is the variance not
explained by the model.

There are some limitations to Hotelling’s T2 due to the fact that it uses the variance�
covariance matrix when constructing the test statistic. As discussed above in the context of
the multivariate tests for regression models, using the variance�covariance matrix
requires that the matrix Σr be inverted and thus this matrix must be of full rank. When
working with landmark data, the variance�covariance matrix of the coordinates is not of
full rank because we have 2K (or 3K) coordinates but only Q5 2K2 4, 3K2 7 or 2K1L2 4
(etc.) degrees of freedom. To obtain a matrix of full rank for landmarks, we could use
Bookstein shape coordinates or partial warp scores or the appropriate number of principal
component scores. Semilandmarks pose more of a challenge not only because of the rank
of the variance�covariance matrix but also because we will rarely have sample sizes four
or five times the number of coordinates of semilandmarks. Another problem is that the
test presupposes that the two samples have the same variance�covariance matrix.

Fortunately, we can use Goodall’s F-test (Goodall, 1991), as discussed above in context
of regression. In the case of a comparison between two means, Goodall’s F-test is given by:

F5
n1 1 n2 2 2

n21
1 1 n21

2

D2
122P

D2
1 1

P
D2

2

� � (8.19)

where D122
2 is the squared Procrustes distance between the two means, and the summed

terms on the bottom are the squared Procrustes distances of the specimens within each
group around the mean of their group. The ni values are again the sample sizes of the two
groups, and Q is the degrees of freedom in the measurements. This F-value is approxi-
mately distributed as F distribution with dfnumerator5Q, and dfdenominator5 (n11 n22 2)Q.
Clearly, this F-ratio is again a ratio between the variance explained by the model and the
unexplained variance.

In the derivation of this F-test, the assumption is that variation is isotropic normal scatter
at each landmark, meaning that all landmarks vary equally and independently, which is not
typically the case for actual data. Goodall’s F-test is thought to be fairly robust to violations
of the underlying assumptions but, just as we used resampling-based tests to test the signifi-
cance of Goodall’s F in the case of regression, we will do so when comparing group means.
The F-ratio is first computed exactly as in Equation 8.19, but to test the significance of F, we
will either permute members of the groups (sampling without replacement) or bootstrap the
data (sampling with replacement). A more thorough explanation of these and other random-
ization procedures is in the Appendix to this chapter. These resampling procedures are
used to determine how often an F-value as large or larger than the observed one is obtained
over many resamplings, providing an estimate of the p-value of the observed F-ratio.

Testing the Null Hypothesis that Chipmunk Jaw Shape is Not Sexually
Dimorphic

To exemplify the comparison between two means, we will test the null hypothesis that
alpine chipmunk jaws are not sexually dimorphic, i.e. that there is no difference between
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the shapes of male and female jaws. For the data restricted to the 15 landmarks, we obtain
a value of Wilks’ Λ of 0.6964, with 26 and 77 degrees of freedom (for numerator and
denominator, respectively, yielding an approximate F-ratio of 1.29. The probability of
obtaining an F-ratio this large, with those degrees of freedom, when the null hypothesis is
true, is 0.1946. We thus would not reject the null hypothesis that mandibular shape is not
sexually dimorphism. Using Goodall’s F-test, the percent of the variance unexplained by
the regression is 96.18, so 3.82% of the variance is explained by the regression. The F-ratio
is 4.06, with 26 and 2652 degrees of freedom, and the probability of obtaining an F-ratio
this large, with these degrees of freedom, is less than 0.005. Only 0.1% of permutations
yield an F-ratio this large or larger, so we can reject the null hypothesis that males and
females do not differ in shape. The effect, shown in Figure 8.6A, is exaggerated fivefold
because it is subtle, being most pronounced on the coronoid process, depth of the ramus
and (perhaps) curvature of the incisor. Given that these 15 landmarks provide so little infor-
mation about mandibular shape, especially the complex curvature of the jaw, we redo this
analysis including the 85 semilandmarks. Using Goodall’s F-test, we determine that sex
does not explain 95.59% of the variation in shape and thus that it does explain 4.41% of the
variation. Goodall’s F for this case is 4.71, with 196 and 19992 degrees of freedom; the proba-
bility of obtaining an F-ratio this large, with these degrees of freedom, is less than 0.005.
Using permutations instead to determine the significance of F, we find that 0.1% of the
values for F obtained by permutation equal or exceed the observed one, thus we again con-
clude that sex has a statistically significant, if relatively small, impact on shape. Depicting

FIGURE 8.6 Sexual dimorphism of T. alpinus (A)
based on 15 landmarks, exaggerated 10-fold; (B)
based on 15 landmarks plus 85 semilandmarks,
exaggerated 10-fold.
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that effect (Figure 8.6B), magnified fivefold, shows that the impact of size is particularly pro-
nounced on the orientation and width of the coronoid process, curvature and length of the
angular process, position of the masseteric fossa, and curvature of the incisor alveolus.

ONE-WAY ANOVA/MANOVA

Having considered a case in which there are only two groups, we now extend the anal-
ysis to three or more. The categorical variable in the analysis of variance (ANOVA) is typi-
cally called a factor or, in the case of experimental studies, a treatment; the different
values it takes are called the levels of the factor. In the case above, there were only two
levels of the factor sex. We will now extend the analysis to factors that have more than
two levels, although in this chapter we still consider only one factor. The factor could be
species, with one level per species, so for nine species we would have nine levels of the
factor. In an experimental case, we might have three treatments, such as three diets (liquid,
soft, hard), in which case we have three levels of the treatment. The question we typically
ask in such cases is whether the factor influences the dependent variable. Classically, this
is called a single factor analysis of variance (ANOVA) or multivariate analysis of variance
(MANOVA), or a one-way ANOVA/MANOVA. This is also a simple example of a
General Linear Model, which encompasses a wide range of analyses, including regression,
ANOVA, MANOVA (with one or more than factors), and Analysis of Covariance
(ANCOVA/MANCOVA), which contain a mixture of categorical factors and continuous
variables (covariates), plus a number of other models. A lot of details about the nature of
factors, and the design of experiments, become critical once we have more than a single
factor. These are the subject of the next chapter. In this one, we consider only a simple one
factor (one-way) ANOVA/MANCOVA.

In the discussion of regression and of Goodall’s F-test, we have seen how to character-
ize the variance in a data set using Procrustes distances, and to measure the variance
explained by a model. In both linear regression and the pairwise comparison of means, we
saw that a permutation test could be used to determine the significance of an F-ratio based
on summed squared Procrustes distances. There are other approaches to charactering vari-
ance that use what is called the sum of squares and cross products matrices (SSCP, which
are linearly related to the variance�covariance matrices) and there are analytic statistical
tests available based on SSCP, which we discuss in the next chapter. In many ways, it is
much easier to use and explain Procrustes distances and permutation tests than to work
with SSCP matrices. We thus begin by discussing a univariate ANOVA as a way of intro-
ducing the basic ideas of the method, and to explain how sums of squares are formed. The
extension of these ideas and explanation to Procrustes distances and to permutation tests
is then relatively straightforward.

Univariate ANOVAWith One Factor

In this section, we examine the development of a general linear model (GLM) for a uni-
variate variable (Y) that is hypothesized to depend on a single fixed factor (A). We will
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show one approach to calculating variances based on sums of squares, using the estimated
means of the specimens in each level of factor A. This approach is conceptually easy to
understand, but it is not in the matrix notation we will need to use in the next chapter,
and it is not the approach used in most computer-based calculations. Most modern
approaches to calculating the sums of squares use matrix algebra and the differences
between the sums of squares are explained by models expressed in terms of design matri-
ces. The simple summation methods presented below are easier to understand at an
introductory level, but difficult to scale up to larger problems and are probably more
prone to rounding errors. Researchers interested in programming their own GLM methods
will need to consult more advanced texts to develop a complete understanding of these
approaches (Anderson, 2001a, b, 2006; Anderson and Robinson, 2001; Rencher and
Schaalje, 2008, for starters).

Suppose that we have a univariate dependent variable Y, which depends on a factor A,
which has J distinct levels and nj specimens per level. We will not require that there be
equal numbers of specimens in each level (also called a cell) at this point. However, we
will require that Y be centered, i.e. its mean value is zero, thereby removing one degree of
freedom. For the ith (i5 1 to nj) specimen in cell j (j5 1 to J) we have the model

Yij 5αj 1 εij (8.20)

where αj is the contribution of the jth level of the factor to the value, and εij is the error.
Notice that we require that the mean value of the residual terms εij be zero, with variance
σe

2, and also that the mean value of Y be zero (because Y is centered). Consequently, the
njαj terms summed over all the cells must also equal zero,

XJ

j51

njαj 5 0 (8.21)

As a result, there are J values for αj but only (J2 1) of them are independent because
the constraint that they sum to zero removes one degree of freedom. Some authors include
a mean value of Y, Y or μ in the expression, rather than requiring that Y be centered, so
you may see the form

Yij 5μ1αj 1 εij (8.22)

We can now look at variance partitioning, i.e. splitting the variation into the portion
explained by the factor and that left unexplained, which is typically called the residual or
error term, just as in linear regression. We need to do this variance partitioning to under-
stand how to form F-ratios in the context of a one-way ANOVA. We will do this by first
looking at the summed square values around the mean value (Y), then splitting that into
two terms, the first being the scatter about the mean (Yj) of each level of factor A, and the
other being the scatter of the mean values of each level about the total mean. The total
sum of squares is given by:

SStotal 5
XJ

j51

Xnj

i51

ðYij2YÞ2 5
XJ

j51

Xk

i51

ðYij2YjÞ2 1
XJ

j51

njY
2

j (8.23)
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Note that Y must be zero, due to the requirement that Y be centered. We have included
the Y term here so that our expression for the sums of squares (SS) will be consistent with
the standard presentations of these ideas.

The first term in the expression above represents the error and the second term is the sum
of squares (SS) due to A, or what is sometimes called the between-group sum of squares:

SSerror 5
XJ

j51

Xk

i51

ðYij2YjÞ2 (8.24)

The SSerror has an expected value of the degrees of freedom multiplied by σe
2. The

degrees of freedom in the error term are given by:

dferror 5
XJ

j51

nj 2 J (8.25)

Therefore, the expected mean square error (or residual) is estimated as:

MSerror 5
SSerror
dferror

(8.26)

which has an expected value of EMSerror5 σe
2. Whereas the expected mean square (EMS)

is calculated from the model, the mean square error (MSE) term is calculated from the
data. If the model describes the data, then MSE and EMS should be similar, differing only
by relatively minor random variation.

The sum of squares contributed by factor A is:

SSA 5
XJ

j51

njY
2

j (8.27)

The mean square value for factor A (MSA) is SSA/(J2 1) because the degrees of freedom,
dfA are (J2 1). The expected mean square (EMSA) has two sources, one being the pooled vari-
ance of the error terms across groups, the other being the squared effects of the factor values:

EMSA 5σ2
e 1

XJ

j51

nj
α2
j

ðJ2 1Þ (8.28)

The null hypothesis we want to test is that factor A does not contribute to the value of
Y. Since we have required that the mean value of Y be zero (when we centered it), the null
hypothesis is that all αj values are equal, and are, in fact, equal to zero. Under these
conditions, the expected mean square value of EMSA is simply σe

2.
The F-ratio of the variance explained by the model to the variance of the errors (or the

residual) is expected to be one if the null hypothesis is true. Thus, we can compute the
F-ratio based on the data as:

F5
MSA
MSerror

5
SSA=dfA

SSerror=dferror
(8.29)
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which will follow an F-distribution with degrees of freedom dfA, dferror. Working with uni-
variate data, we can simply look up this value in a table of F-values to find the associated
p-value. Notice that the F-ratio is the variance explained by the model divided by the
unexplained variance, just as when we used an F-ratio to determine the variance explained
by a regression model, or used Goodall’s F-test to compare the mean shapes of two
groups. Because the expected mean term in the numerator is equal to the denominator
plus one additional term, the F-value will be larger than one if the additional term:

XJ

j51

nj
α2
j

ðJ2 1Þ (8.30)

is not zero. The null hypothesis is that this term actually is zero so, under the null hypoth-
esis, the F-ratio will be one so larger F values indicate lower probabilities that the null
hypothesis is true. If the null hypothesis is rejected, we may then interpret the MSA term
as the variance explained by the factor A, and compare it to the unexplained variance
estimate, MSerror.

EXTENSION OF THE UNIVARIATE ANOVATO MULTIVARIATE
SHAPE DATA

There is a simple approach to extending the single factor ANOVA to shape data (the
more complex approaches are discussed in the next chapter, never fear). Because we have
a well-understood measure of differences in shape, i.e. the Procrustes distance, sums of
squared Procrustes distances may be used to characterize variance in data sets as we dis-
cussed already in the context of regression and the comparison of two groups. To extend
the single factor univariate ANOVA to multiple groups, we simply replace all the summed
square differences in the equations above by summed square Procrustes distances around
the means of each level of A, and about the overall mean shape (Klingenberg and
McIntyre, 1998; Rohlf, 2009). Variance partitioning proceeds exactly as discussed in the
univariate case. The resulting ratio:

F5
MSA
MSerror

5
SSA=dfA

SSerror=dferror
(8.31)

is referred to as a Generalized Goodall’s F-test (Rohlf, 2009) or a pseudo-F-test (McArdle
and Anderson, 2001).

As in the case of linear regression and the pairwise comparison of means, we need not
rely on an analytic model of the distribution of the Generalized Goodall’s F-statistic.
Instead, we can use a permutation approach to test the null hypothesis that the variance
explained by the factor is due to a random association between specimens and group
levels. To test this null hypothesis, we permute the group labels assigned to each speci-
men, randomly associating each specimen with a label. We then compute the F-ratio for
each permuted data set and the distribution of F values obtained over many permutations
can then be used to test the observed F-value at any desired α level. To reject the null
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hypothesis at some α value, less than α of the permutation sets must equal or exceed the
observed F-value. So, for example, to reject the null hypothesis at α5 0.05, less than 5% of
the F-ratios obtained from the permuted data can equal or exceed the observed one.

APPENDIX: AN OVERVIEW OF RANDOMIZATION AND MONTE
CARLO METHODS

In this Appendix, we aim to present the principles underlying randomization methods
in a coherent fashion. More complete discussions of the topics presented in this chapter
can be found in the texts by Efron and Tibshirani (1993) and Manly (1997), and the work
of Anderson and colleagues (Anderson, 2001a,b, 2006; Anderson and Robinson 2001;
Anderson and Ter Braak, 2003). We discuss four classes of methods, including the boot-
strap, jackknife, and permutation tests, and Monte Carlo simulations. To illustrate these
methods, we focus on a few univariate statistical tests. The extension to multivariate statis-
tics is not difficult but, by examining applications to univariate statistics, it may be easier
to acquire an intuitive understanding of how these methods work. The basic ideas
appeared in the work of R.A. Fisher in the 1930s, but the ideas and techniques were nei-
ther developed extensively nor used widely until recently. Perhaps the best summary is
contained in the title of Efron’s (1979) paper, Computers and the theory of statistics, thinking
the unthinkable. The approach he outlined was indeed unthinkable prior to the advent of
computers, and could not be used widely until computers became fast and inexpensive
enough to be generally available to researchers, which accounts for the long time lag
between the development of the ideas and their widespread application. These methods
are computationally intensive because they replace the complex analytic mathematical
methods of classical statistics by an extensive use of randomization and repeated calcula-
tions. The enormous number of calculations required by these methods makes them
unthinkable without inexpensive (and fast) computers.

Resampling Statistics

Classical statistics relies on algebraic derivations of formulae based on a limited number
of well-studied distributions, particularly the normal (Gaussian), F-, gamma, chi-square,
uniform, and Poisson distributions. To see how resampling-based methods can provide an
alternative, we will work through one simple example.

Suppose X is a set of 31 observations of a length:

X5 f2; 2; 3; 4; 2; 5; 3; 2; 6; 2; 3; 4; 6; 2; 1; 4; 3; 7; 2; 3; 4; 4; 5;

8; 5; 2; 1; 3; 4; 4; 3g (8A.1)

In this case, N5 31. We can compute the mean (denoted ,X. for “the expectation of X”)
by:

,X. 5
XN

i51

Xi

N
(8A.2)
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where Xi is the ith element in the list. In our example, ,X. 5 3.52. Of course, we also
need to quantify our uncertainty in this value. If we assume that the distribution of X fits
the model of a normal distribution, then the standard error of the mean is given by the
standard deviation σ divided by the square root N (the number of observed individuals).
The standard deviation is:

σ5

PN
i51 ðX02,X. Þ2

N21

 !1=2

(8A.3)

so the standard error of the mean (SEM) is:

SEM5
σffiffiffiffi
N

p 5

PN
i51 ðX02,X. Þ2

NðN21Þ

 !1=2

(8A.4)

For our example, σ5 1.69 and N5 31, so SEM5 1.69/(31)1/25 0.304.
The 95% confidence interval for the mean, assuming a normal distribution, ranges from

,X. 21.96(SEM) to ,X. 11.96(SEM) because, for a normal or Gaussian distribution,
95% of the values in the distribution lie within 1.96 standard deviations of the mean. So,
for our example, 1.96 SEM5 0.304 and ,X. 5 3.52, so the 95% confidence interval is
from 2.92 to 4.12. Suppose that we want to claim that the average body length of this pop-
ulation is greater than 3.0 cm. Again, using the normal distribution, we can calculate that
the chance of the mean being less than or equal to 3.0 is 0.049%, so we can reject the
hypothesis that the mean is less than or equal to 3.0 at a 5% confidence level, meaning that
we accept a 5% chance of rejecting the null model when it was true (Type I error).

What difficulties arise in this example? First, we have assumed that the distribution is
normal. This is important even though statistics based on the normal distribution are
known to be robust to violations of the assumptions of normality. Nevertheless, as the dis-
tribution departs further from normality, larger errors appear in the results, leading to
increased error rates. The validity of the normal distribution for our example has not been
determined. Is that assumption reasonable? If the distribution is normal, 1.9% of the mea-
surements will be less than or equal to zero (that is the expectation under the model).
Does that pose a problem? Yes, because we are measuring lengths, and none can be less
than zero, under any circumstances � in fact, the lower bound may be substantially larger
than zero (due to physiological constraints on the size of the organism). So we know that
our distribution must deviate from the normal distribution, at least with respect to the
expectation that the mean will be zero. Perhaps that deviation has only a small effect on
our estimate of SEM, but we are relying on the reputation of the normal distribution as a
robust estimator to reassure ourselves about that. We really do not know what effect that
lower bound has on our statistical inferences. We could of course transform our values,
subtracting the mean from all of them, for example. And there are other distribution mod-
els besides the normal, or we could use other transformations (taking the natural log for
example), in an effort to arrive at normally distributed variables.

The other difficulty we face is the lack of an exact formula for the standard error of many
statistics, or of functions of statistics that we might want to work with. Suppose we want to
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know the standard error in the median of the distribution. We can calculate the median of
our measurements of X, which equals 3.0, but can we actually conclude that the median of
the population is greater than 2.0? We do not really know the range of values that the median
might take on for this distribution, and the normal model provides no estimate of the uncer-
tainty in the median. The standard deviation and variance of populations are also of tremen-
dous biological interest, but how do we estimate the range of values for these statistics?

Resampling-Based Methods

Having noted that we can face serious difficulties when we assume a normal distribu-
tion and rely on the theory based on it, we now examine methods that allow us to make
statistical inferences without assuming any distribution.

The Bootstrap

We begin with the bootstrap because it is probably the easiest to understand. It was not
the first computer-based statistical method developed; in fact it is one of the more recent
(it was developed from jackknife and permutation methods). The term “bootstrapping”
comes from the novel Baron Münchausen’s Narrative of his Marvelous Travels and Campaigns
in Russia, by Rudolph Erich Raspé (1785), in which the Baron falls to the bottom of a deep
lake. He cannot figure out what to do until, at the last moment, he thinks to pull himself
up by his own bootstraps. This describes, fairly accurately, the approach used in a boot-
strap procedure: the observed data themselves are used as a basis for resampling. We will
approximate the unknown statistical distribution from which the data were drawn by
(randomly) resampling our data.

A bootstrap set is a set of data of the same sample size as the original data set, whose
elements are randomly drawn with replacement from our original set of observations. To
draw them randomly (with replacement) from a set of N elements, a uniformly distributed
random number from 1 to N is generated by a random number generator. The correspond-
ing element from the original set of observations then forms the first element in the boot-
strap set. For example, given our 31 observations, we will construct a sample that also has
31 observations. The number provided by the random number generator is 8, so we take
the value of the eighth individual of our sample as the first value in the bootstrap set. This
procedure is repeated N times. Note that a single value from the original data set may
appear multiple times in a bootstrap set because we are sampling with replacement, mean-
ing that we do not remove an individual from the sample after we have placed its value
in the bootstrap set. As a result, some values might not appear at all in the bootstrap set.

To see how a bootstrap set is formed, we consider an abstract, symbolic example.
Suppose C contains five values:

C5 fC1;C2;C3;C4;C5g (8A.5)

To form a bootstrap version of C, we generate a list of five random numbers, each inde-
pendently chosen and ranging from 1 to 5 (because N5 5):

L5 f5 2 4 3 5g (8A.6)
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The numbers in L are the ordinal positions of the elements of C so CBootstrap contains
the corresponding values of C (e.g. L15 5, so it corresponds to the fifth element of C,
which is C5). Thus:

CBootstrap 5 fC5;C2;C4;C3;C5g (8A.7)

Note that C5 appears twice in this bootstrap set whereas C1 does not appear even once.
Returning to the numerical example presented earlier:

X5 f2; 2; 3; 4; 2; 5; 3; 2; 6; 2; 3; 4; 6; 2; 1; 4; 3; 7; 2; 3; 4; 4;

5; 8; 5; 2; 1; 3; 4; 4; 3g (8A.8)

To form a bootstrap set, XBoot, from X, we generate the list, B, of 31 random numbers:

B5 f30; 8; 19; 16; 28; 24; 15; 1; 26; 14; 20; 25; 29; 23; 6; 13; 29;

13; 28; 2; 11; 26; 1; 5; 7; 7; 19; 9; 7; 1g (8A.9)

We then select the elements of X corresponding to those ordinal values:

XBoot 5 f4; 2; 2; 4; 3; 8; 1; 2; 2; 2; 3; 5; 4; 5; 5; 6; 4; 4; 6; 3; 2;

3; 2; 2; 2; 3; 3; 2; 6; 3; 2g (8A.10)

We can now calculate the mean, standard deviation and median of XBoot:
,XBoot. 5 3.39, σχBoot,5 1.62, and median(XBoot)5 3. These values are slightly different
from those of the original distribution, ,X. 5 3.52; σ5 1.69, and median (X)5 3.0. To
arrive at an estimate of the confidence intervals for these statistics, we will compute a large
number (NBootstrap) of bootstrap sets. We will then determine the 95% confidence interval
over the NBootstrap sets, forming a bootstrap estimate of the confidence intervals on the mean,
standard deviation and the median. If we generate 200 bootstrap sets based on X, we find
that the 95% confidence interval for the mean is 3.00 to 4.10; for the standard deviation the
confidence interval is 1.23 to 2.10, and for the median it is 3.00 to 4.00. The normal model
predicted a 95% confidence interval for the mean, 2.91 to 4.12, so the two methods approxi-
mately agree. They appear to differ at the lower boundary (at small lengths), which is where
we expect departures from the normal distribution, for the reasons discussed earlier.

The approach outlined here may be extended to virtually any statistic and to any func-
tion, univariate or multivariate. For example, we can use it to perform t-tests, which are
used to compare the means of two samples. It is possible that the difference in numerical
values of two means is due solely to an arbitrary division of one group into two. Because
of the variation within the population, drawing two samples from it can result in two sam-
ples that differ numerically in their means.

Let us look again at our sample of 31 measured lengths:

X5 f2; 2; 3; 4; 2; 5; 3; 2; 6; 2; 3; 4; 6; 2; 1; 4; 3; 7; 2; 3; 4;

4; 5; 8; 5; 2; 1; 3; 4; 4; 3g (8A.11)

and consider a second group of 18 lengths:

Y5 f2; 2; 3; 2; 4; 2; 3; 2; 8; 9; 2; 9; 3; 2; 3; 3; 3; 9g (8A.12)
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Using the normal model, we find that ,X. 5 3.52, σX 5 1.69, and ,Y. 5 3.94 and
σY5 2.71. To test whether the means are different, we find the probability of statistic t:

t5
ð,Y. 2 ,X. Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2
X
ðNX 2 1Þ1σ2

Y
ðNY 2 1Þ

NX 1NY 2 2

� �
NX 1NY

NXNY

� �r (8A.13)

with degrees of freedom equal to (NX1NY2 2). For relatively large values of NX and NY,
the t-value will be normally distributed with a mean of zero and a standard deviation of
one, provided that the null hypothesis of equal means is true. If the absolute value of t
exceeds 1.96, we may conclude that, under the normal model, there is only a 5% chance of
the mean values being that different by chance. We can thus reject the null hypothesis at a
5% level of confidence.

The problem is that the list of lengths contained in Y is highly non-normal. Most values
are close to 3, but there are several around 8 or 9, so Y appears to be rather bimodal. Also, in
a normal distribution with a mean of ,Y. 5 3.94 and a standard deviation of σY5 2.71,
we would expect that 7.3% of the measured lengths would be less than zero. So, the distribu-
tion of Y departs substantially from normality, more so than does the distribution of X.

To form a bootstrap version of the t-test, we simulate the null hypothesis we wish to reject.
This simple principle is the key to understanding how to form your own bootstrap tests
when asking novel statistical questions. The null hypothesis of the t-test is that the means
of the two groups are equal, which we can also phrase as the hypothesis that the two
groups in question came from a single underlying distribution that was arbitrarily subdi-
vided into two groups. If this were the case, any difference between the means would
arise simply by chance. So, to test this hypothesis, we assume that the null hypothesis is
true � i.e. that X and Y were drawn from the same population. This means that under the
hypothesis, specimens are exchangeable between the two groups (Anderson, 2001b).
Therefore, we merge the two sets of observations (X and Y) into a common pool of speci-
mens (Z) and draw (with replacement) two bootstrap sets from Z, one of size NX and one
of size NY, and compute the differences in means between the two bootstrap sets. This is
repeated NBootstrap times. We can then determine the number of times in which the differ-
ence between the means of paired bootstrap sets exceeds the observed difference between
the means of X and Y. Expressed as a proportion of the total, we get an estimate of the
probability that the observed difference is due to chance; i.e. if the difference between
means of pairs of bootstrap samples exceeds the observed differences in 5% (or fewer) of
the total number of iterations, we can reject the null hypothesis that the means are equal.
This is simply another way of phrasing the statement that the observed difference is statis-
tically significant at a 5% confidence level if the observed difference between means
exceeds the 95th percentile of differences between means of the bootstrap sets.

A symbolic example of this merging and subsequent formation of two bootstrap sets
may help to develop an understanding of how the test operates. Suppose we have a set C
of five elements, and a set D of four elements:

C5 fC1;C2;C3;C4;C5g (8A.14)

D5 fD1;D2;D3;D4g (8A.15)
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The merged set, M, would have nine elements:

M5 fC1;C2;C3;C4;C5;D1;D2;D3;D4g (8A.16)

To draw two bootstrap sets out of M, we would form a list of five random integers
(because there are five elements in C), and the elements in M corresponding to this list
would be the elements in the bootstrap version of C:

L1 5 f7 5 1 8 5g (8A.17)

CBootstrap 5 fD2;C5;C1;D3;C5g (8A.18)

Note that two elements in CBootstrap come from D. A second list of four integers is used
to form a bootstrap version of D:

L2 5 f2 4 9 9g (8A.19)

DBootstrap 5 fC2;C4;D4;D4g (8A.20)

The approach we used to produce the bootstrap versions of C and D reflects the null
hypothesis that C and D come from a common underlying distribution. The elements of C
and D are thus interchangeable.

The difference between means of the bootstrapped versions of C and D can be deter-
mined by many repetitions, developing a bootstrap estimate of the distribution of the differ-
ences between means produced by the null hypothesis (given the data). When we carry out
this bootstrap t-test on our numerical example, sets X and Y, we find that 268 of 1000 boot-
strap sets (26.8%) have a difference between means as large or larger than that between the
means of X and Y. Thus, we cannot reject the null hypothesis that these samples were drawn
from populations with equal means, the difference between them being due solely to
chance. Using a t-test based on the normal distribution, we would have rejected that null
hypothesis. Because both samples appear to have non-normal distributions, it seems reason-
able to attribute the difference between results to violating the assumption of normality.

Permutation Tests

Permutation tests pre-date bootstrap tests, having been introduced by R.A. Fisher in the
1930s as a basis for supporting the ideas of the Student’s t-test rather than as a tool for
computation. With the advent of computers, permutation methods could be used prof-
itably for statistical inference. Permutation tests operate in much the same manner as
bootstrap tests, but differ in that they resample groups without replacement. This makes
permutation tests suitable for hypothesis testing, but not for the estimation of confidence
intervals (Efron and Tibshirani, 1993; Good, 1994; Manly, 1997).

Again, we can look at a simple, abstract example of how a permutation set is formed to
get a sense of how the approach works, and how it differs from the bootstrap. Consider
two data sets C and D:

C5 fC1;C2;C3;C4;C5g (8A.21)

D5 fD1;D2;D3;D4g (8A.22)
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with sample sizes of five and four respectively. We form the merged set M of nine
elements:

M5 fC1;C2;C3;C4;C5;D1;D2;D3;D4g (8A.23)

To produce permuted versions of C and D, we want to resample M without replace-
ment. To do this, write a list of nine integers and randomly permute it to form a list L:

L5 f5 2 6 8 7 3 9 4 1g (8A.24)

The first five values in L are the ordinal values of the elements in M, placed in the per-
muted version of C:

Cpermutation 5 fC5;C2;D1;D3;D2g (8A.25)

The last four values in the list are the ordinal values of the elements in M that are
placed in the permuted version of D:

Dpermutation 5 fC3;D4;C4;C1g (8A.26)

Note the different way that the permutation sets (Equations 8.25, 8.26) and bootstrap
sets (Equations 8.18, 8.20) are constructed from C and D.

To carry out a permutation test of the hypothesis that the means of the two groups X
and Y, we would first compute the difference between the means of the two groups, which
have sample sizes of NX 5 31 and NY5 18. The second step is to merge the two data sets
into a single larger one and form a series of paired permutation sets, each drawn from the
merged data set. The first permutation set in each pair, containing NX specimens, is drawn
randomly without replacement from the merged set. The second permutation set of the
pair contains the remaining NY elements of the merged data set. (No element of the origi-
nal sets appears twice in the paired permutation sets, and none is omitted.) The difference
between means of the two permutation sets is then calculated, and repeated for NPermutation

sets. The proportion of times in which the difference between the means of the paired per-
mutation sets exceeds that between the original data sets is taken as the probability that
the observed value could have arisen by a random splitting of a single underlying
distribution.

The permutation test of the difference between the means of sets C and D indicates that
21.3% of the permuted sets had a difference in means equal to or greater than the observed
difference of 0.428, so we cannot reject the null hypothesis that the means are equal at a
5% level of confidence. The permutation test has produced results agreeing with the boot-
strap test (in which 26.8% of the bootstrap sets had a difference between means as large or
larger than the observed data set).

It is possible to form permutation tests for a wide variety of statistical hypotheses in a
manner similar to the bootstrap (see Efron and Tibshirani, 1993; Good, 1994; Manly, 1997)
and, in the next chapter, we will see permutations of residuals from the full or reduced
model (Anderson and Ter Brakk, 2003). However, there is an important difference between
the permutation and bootstrapping approaches due to fundamental differences in how
they operate. Permutation tests are not suited to the estimation of confidence intervals
because the standard deviation of the estimates of a parameter (such as a mean or median)
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is not a reliable estimate of the standard error in that parameter. Rather, the permutation
test yields an estimate of the range of parameter values possible under the null model sim-
ulated by the test. In contrast, the standard deviation of the bootstrap estimates of the
same parameter yields a reliable estimate of its standard error because the bootstrap
resampling simulates a repetition of the process of selecting specimens from the popula-
tion (Efron and Tibshirani, 1993). When used for hypothesis testing, both methods tend to
give very similar results, so it is difficult (and perhaps unnecessary) to determine which
approach is preferable in most cases. To some extent, the choice between them appears to
be a matter of preference among writers of software. There are some reasons to think that
permutation tests may yield a more exact achieved significance level (ASL) than bootstrap
approaches (Efron and Tibshirani, 1993; Good, 1994), but this is at the cost of precluding
estimates of confidence intervals (or standard errors) on the statistics involved.

The Jackknife

Jackknife methods (Quenouille, 1949; Tukey, 1958) also preceded bootstrap methods
and, to some extent, have been supplanted by them. Jackknife estimates are obtained by
resampling such that one element is left out at a time. If there are N specimens in a sam-
ple, then it is possible to form N jackknife data sets, each with N2 1 specimens. If we
again look at the set C:

C5 fC1;C2;C3;C4;C5g (8A.27)

The five possible jackknife versions of C are:

CJ1 5 fC2;C3;C4;C5g (8A.28)

CJ2 5 fC1;C3;C4;C5g (8A.29)

CJ3 5 fC1;C2;C4;C5g (8A.30)

CJ4 5 fC1;C2;C3;C5g (8A.31)

CJ5 5 fC1;C2;C3;C4g (8A.32)

Jackknife data sets will always be more similar to the original data set than bootstrap
sets are because bootstrapping offers a greater variety of ways of resampling the data. The
jackknife may be viewed as an approximation to the bootstrap (Efron and Tibshirani,
1993), and it is a good approximation when the changes in the statistic are smooth or lin-
ear with respect to changes in the data. The mean is a linear statistic, but the median is not
(because the median may change abruptly as observations are added or subtracted from
the sample). Therefore, jackknife and bootstrap estimates of the mean will not differ much
but estimates of the median may differ considerably.

There are some approaches to combining the bootstrap and the jackknife (see particu-
larly Efron, 1992; Efron and Tibshirani, 1993, Chapter 19, on assessing the error of boot-
strap estimates), but otherwise the jackknife appears to offer few advantages over the
bootstrap.

Cross-validation testing of models (Manly, 1997) is somewhat similar to jackknife test-
ing. Cross-validation is used to test the performance of predictive models, like regression,

2. ANALYZING SHAPE VARIABLES

217APPENDIX: AN OVERVIEW OF RANDOMIZATION AND MONTE CARLO METHODS



or the performance of discriminant function or canonical variates analysis. In these appli-
cations, some portion of the data (anywhere from 1 specimen to 50% of the data) is held
aside as a test set, while the model or discriminant function is fitted to the remainder of
the data, which is designated as the training data. The quality of the fit of the model, or
the performance of the discriminant function, is then evaluated on the test data. This
approach yields an estimate of the performance of the model, if it were to be used on new
data. Cross-validation is particularly helpful in detecting overfitting of models.

Monte Carlo Methods

Monte Carlo methods compare the value of an observed statistic to the range of values
expected under a given null hypothesis, assuming a model of the populations involved.
Like analytical statistical methods, Monte Carlo methods require making assumptions
about the nature of the distribution from which populations are drawn. They then fit para-
meters of the distributional models to the observed samples. In contrast, analytic statistical
approaches use algebraic derivations to estimate the values of statistics (and standard
errors in those statistics) based on the nature of the underlying distributions. The distinc-
tion is that Monte Carlo approaches generate random data sets based on the parameters
and distribution of the model; those random data sets are drawn from model distributions
having the same sample size as the original one. The distribution of the statistic of interest
(estimated over many computer-generated Monte Carlo sets) is used to estimate the mean
and standard deviation of that statistic under the null model and the model distribution
used. Monte Carlo methods can be used both for hypothesis testing and for generating
confidence intervals.

Monte Carlo methods use numerical simulations to avoid the need for extensive alge-
braic computations and approximations. It may often be easier to program a Monte Carlo
simulation than to determine analytically the distribution of an intricate statistical func-
tion, particularly when the statistic is not a linear function. Because it is necessary to
assume a model of the distributions of the samples, the Monte Carlo method shares most
of the primary weaknesses of analytic statistics; if the observed distribution departs sub-
stantially from the model, the Monte Carlo sets will not represent the actual system of
interest. One useful feature of the Monte Carlo method is the ability to determine the effect
of different distributional models (the ones typically used are the uniform, normal or
Gaussian, and Poisson) on the range of values estimated by the Monte Carlo sets. The
comparison of observed distributions to those produced by Monte Carlo methods is a
powerful approach to hypothesis testing.

For example, if we wish to determine the significance of the observed difference in the
means of sets X and Y:

X5 f2; 2; 3; 4; 2; 5; 3; 2; 6; 2; 3; 4; 6; 2; 1; 4; 3; 7; 2; 3; 4; 4;

5; 8; 5; 2; 1; 3; 4; 4; 3g (8A.33)

Y5 f2; 2; 3; 2; 4; 2; 3; 2; 8; 9; 2; 9; 3; 2; 3; 3; 3; 9g (8A.34)

we will test the null hypothesis that the two sets (X and Y) came from the same underly-
ing distribution, with the observed difference between them being due to a random
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assignment of specimens into groups. To form the Monte Carlo set, we will assume that
the single underlying distribution is normal. We then estimate the mean and standard
deviation of this underlying distribution by merging the data sets into a single group. The
mean of the single distribution is 3.67 and the standard deviation is 2.1. To determine the
significance of the observed difference in the means of the two groups, we generate a
series of paired Monte Carlo sets, one with a sample size NX5 31, one with a sample size
NY5 18, and we determine the difference between the two means. We then determine the
proportion of NMonte Carlo sets in which the difference between the means of the paired
Monte Carlo sets exceeds that observed between the means of the original data sets.

For the sets X and Y above, the Monte Carlo sets were generated under the assumption
that both samples were drawn from the same normal distribution, with a mean of 3.67
and a standard deviation of 2.1 (the mean and standard deviation of the combined data
sets). In 480 of 1000 pairs of Monte Carlo sets (48%), the difference between the means of
the paired Monte Carlo sets exceeds the observed difference between the means of the
original data sets, thus the null hypothesis of a single underlying normal distribution can-
not be rejected. It should be noted that the combined data set (of all specimens in X and Y)
is probably not normally distributed, so we might want to repeat the Monte Carlo test
using other models of the underlying distribution.

Monte Carlo simulations are particularly useful for testing different hypothetical situa-
tions when the underlying distributions are believed to be well known. Monte Carlo meth-
ods can be used in cases when bootstrap methods cannot, such as to estimate the effect of
increasing the sample size on the estimated variance; Monte Carlo simulations are not lim-
ited by the observed sample sizes (as bootstrap methods are).

Example: Resampling Tests and Regression Models

To this point, we have focused on t-tests, but computer-based methods are useful for a
wide variety of tests. To develop a more general understanding of these methods, we now
show how bootstrap and permutation methods can be used in regression analysis. As pre-
sented earlier in this chapter, the model for a regression, given N observations for pair of
measurements (Xi, Yi):

Yi 5A1BXi 1 εi (8A.35)

The slope, B, is given by:

B5
sXY
sXX

(8A.36)

The intercept, A, is given by:

A5 ,Y. 2B,X. (8A.37)

where ,X. and ,Y. are the expected values (means) of the Xi and Yi values, and

sXY 5
XN

i51

ðXi 2 ,X. Þ2 (8A.38)
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sXY 5
XN

i51

ðXi 2 ,X. ÞðYi 2 ,Y. Þ (8A.39)

are the values of A and B which minimized the summed square residuals (εi). This sum of
squared error terms is:

Error5
XN

i51

ðYi2A2BXiÞ2 5
XN

i51

ðεiÞ2 (8A.40)

under the assumption that the residuals are independently and identically normally
distributed.

To show that there is a statistically significant dependence of Y on X, it is sufficient to
show that the confidence interval on the slope excludes zero. This is equivalent to showing
that there is a non-zero correlation between Y and X, which may be tested using the
squared value of the correlation coefficient (R2) between X and Y, which indicates the frac-
tion of the variance in the dependent variable (Y) that is explained by the independent
variable (X). The expression for R2 is:

R2 5
s2XY

sXXsYY
(8A.41)

where

sYY 5
XN

i51

ðYi 2 ,Y. Þ2 (8A.42)

It is very common to interpret high R2 values as being indicative of high explanatory
power in a regression model. There is a method of testing whether an R2 value is statisti-
cally significant (under the assumption of normality of the residuals), by the expression:

1

2
ln

11R

12R

	 

(8A.43)

which is a normally distributed variable, with variance equal to 1/(N2 3), where N is the
sample size.

The significance of the slope can be assessed by a permutation test. The objective is to
determine the range of slopes that could be generated by random permutations of the
associations among X and Y values, since the null hypothesis implies that these values are
exchangeable. Thus, we again adopt the strategy of assuming that the null hypothesis is
true (which, in this case, is that the associations among X and Y values are random). The
associations of the Xi values with the Yi are then randomized, generating a permutation
set of paired X and Y values with the same distribution of X and Y values as in the data,
but with randomized combinations of X and Y. The regression model is then fitted to each
permutation set, and the slope (or correlation coefficient) is calculated. The distribution of
the regression slopes (or the correlation coefficients) generated by the permutation sets can
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be used to determine if the observed regression slope (or correlation coefficient) could
have been produced by a random association among X and Y variables. If the observed
slope (or correlation coefficient) is outside the 95% confidence interval of the permutation
sets, then we can reject the null hypothesis that the slope (or correlation coefficient) does
not differ from zero. Note that the permutation test estimates the range of slopes (or corre-
lation coefficients) produced by the null model, not by the observed data. Thus we reject the
null hypothesis by showing that the observed statistic lies outside the range of the values
predicted by the null model.

To carry out a bootstrap test of the significance of the regression line, two approaches are
available: one is to bootstrap the paired observations (Xi, Yi); the other is to bootstrap the resi-
duals from the regression. Note that we could also use permutation methods, on either the
raw data or the residuals. When bootstrapping specimens, we form bootstrap sets by sam-
pling (with replacement) from the paired specimen values (Xi, Yi) to form a bootstrap set.
The regression model is fitted and the slope (or correlation coefficient) is determined for each
bootstrap set, forming a bootstrap estimate of the confidence intervals for the slope (or corre-
lation coefficient). This yields a confidence interval on the slope itself, so that if it excludes
zero, we can reject a null hypothesis that the regression slope (or correlation) is zero.

The alternative is to bootstrap the residuals, by first determining the residuals to the
bootstrap, and the Y values that are predicted by the regression model for each X value:

Ypredicted 5A1BX (8A.44)

Then the residuals are randomly combined with the paired Xi and Ypredicted values, both of
which are resampled (with replacement). This approach produces a wider variety of possi-
ble paired values of Xi and Yi; it can be thought of as bootstrapping the variable part of
the distribution, independently of the portion that is dependent on X. The range of slopes
(or correlation coefficients) is determined over many bootstrap sets; if the 95% confidence
interval for the slope (or correlation coefficient) excludes zero, we can infer that there is a
statistically significant dependence of Y on X at a 5% confidence level.

The discussion of how a permutation test is used to determine the statistical significance
of a regression slope serves as a useful illustration of the differences in approach between
bootstrap and permutation methods. In the permutation method, the approach is to esti-
mate the confidence interval under the null model, given the distribution of observed data.
Thus, if the observed statistic is outside the confidence interval of the null, the observed
statistic is judged to be significant. In contrast, the bootstrap approach estimates the range
of the statistic on the observed data (rather than the range under the null). Permutation tests
almost always focus on estimating distributions under the assumption that the null model
is true, whereas bootstrap methods can be used to estimate the distribution of a statistic
either over the observed data or under an assumption that the null is true.

Issues Common to All Resampling Methods

Statistical Power

When evaluating the utility of statistical tests we tend to focus on the rate of Type II
errors (i.e. failing to reject the null hypothesis when it is false and the alternative is true).
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That is because we can control the rate of Type I error (i.e. falsely rejecting the null
hypothesis when it is true). Type I error rates are controlled by setting the alpha level of
the test and so statistical tests cannot be said to differ in their rates of Type I error. In con-
trast, they can differ in their rates of Type II error. The power of a statistical test is its ability
to distinguish between the false null hypothesis and the true alternative, and it is some-
times expressed as 1 minus the rate of Type II error.

Estimating the power of statistical tests turns out to be both difficult, and neglected by
many researchers. Some work indicates that permutation, bootstrap and analytic tests
have equivalent statistical power when the data meet the requirements of the analytic tests
(Hoeffding, 1952; Robinson, 1973; Romano, 1989; Manly, 1997). Edgington (1995) reports
higher statistical power for randomization tests when there are violations of the assump-
tions of the analytic statistical tests. Efron and Tibshirani (1993) present an approach to
estimating power, given a specific sample size. The approach offered by Sheets and
Mitchell (2001) is to use Monte Carlo methods to estimate the rates of Type II error under
several plausible alternatives to the null hypothesis. Despite the attendant difficulty in
estimating the statistical power of different tests, randomization-based tests seem to have
at least as much statistical power as the more familiar analytical tests.

How Many Repetitions?

Regardless of the method used, the researcher is always faced with the question of how
many replications or repetitions should be made. We want a small bias and standard devi-
ation, but it is not clear how many replications are required to achieve this end. The num-
ber of independent bootstrap samples that one may form out of N specimens is (2N2 1)!/
N!(N2 1) (Efron and Tibshirani, 1993), which is over 90 000 for N5 10 specimens. In most
cases, even thousands of bootstrap replicates will not come close to exhausting all possible
bootstrap sets. Typically, a modest subset of all possible sets is adequate for most statisti-
cal questions. Estimates of standard errors can usually be produced using only 100 or
fewer bootstrap sets (Efron and Tibshirani, 1993), but reliable estimates of confidence inter-
vals may require using many more. It does not appear that there is complete consensus on
this issue (see Efron, 1992; Efron and Tibshirani, 1993; Jackson and Somers, 1989; Manly,
1997), but it does seem that more repetitions are necessary for estimating confidence inter-
vals in that we must estimate a specific percentile point value, than for hypothesis testing
(see Manly, 1997) or for estimating of standard errors (Efron and Tibshirani, 1993). If com-
puter time is not an issue, a range of 1000 to 2000 bootstrap tests is recommended for esti-
mating a 95% confidence interval on a parameter (Efron, 1987; Efron and Tibshirani, 1993)
and, in light of the very fast computers now generally available, far more than these are
feasible. When the time necessary to complete a calculation is a factor, one approach is to
increase the sample size steadily until arriving at a value that is stable with respect to fur-
ther increases in sample size. The stability criterion is perhaps most applicable to hypothe-
sis testing, where we may not need to know the exact confidence level of the observed
statistic � only that we can (or cannot) reject the null hypothesis at a 5% confidence level.

Using this sequential approach, we could, for example, run a bootstrap t-test and find
that in 100 bootstrap tests the difference in means exceeds the observed difference 40 times
(yielding p5 0.40). It is probably safe to state that we cannot reject the null at a 5% confi-
dence level in light of that result. A repetition of the bootstrap procedure might yield a
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slightly different confidence level, even changing by several percentage points, but it is
highly unlikely to yield p, 0.05. Similarly, in such a bootstrap t-test, if the difference in
bootstrap means never exceeds the observed difference in means (in 100 bootstrap sets), a
single repetition of the bootstrap calculations at 100 bootstrap sets confirms that p, 0.05
appears to be reasonable (although the authors would probably use more than 100 repeti-
tions in results intended for publication, just to be cautious). The difficulty arises when the
bootstrap estimate of the p-value is very close to the desired confidence level (p5 0.05 in
this example). In such a case, a large number of bootstrap sets may be warranted.

It is worth remembering that for NBootstrap sets, the smallest confidence level we could
possibly estimate is 1/NBootstrap � e.g. for 1000 bootstraps, the smallest confidence level we
could ever hope to estimate is 1/10005 0.001. The estimate of the confidence interval at
0.001, using 1000 bootstrap sets, is essentially based on the value obtained from a single
bootstrap set (the one producing the largest or smallest value out of the 1000 sets exam-
ined). This suggests that it would be more appropriate to use 10 000 to 20 000 sets to
obtain an estimate of the confidence interval at 0.001, so that the estimate is based on the
results of 10 to 20 bootstrap sets (the 10 or 20 most extreme values out of the 10 000 or
20 000 total sets). In most cases, it is not necessary to estimate confidence intervals at 0.1%
(0.001) because 5% confidence intervals are the standard, and are achievable with lower
numbers of bootstraps.

When in doubt about the number of bootstrap sets that should be used to establish a
particular confidence interval, the safest approach is to repeat the analysis after doubling
the number of bootstrap sets (to determine whether that doubling alters the confidence
level). This doubling should be repeated until the estimate stabilizes; the iterative
approach may be time-consuming, but it is preferable to a blind reliance on a rule of
thumb.

Summary

Randomization tests provide a useful alternative to the more familiar analytical statisti-
cal approaches, particularly when the observed distribution departs substantially from the
assumptions of analytic models, or when no analytic estimate is available for the confi-
dence interval of a specific statistic needed for the analysis. The performance of these
methods appears to be equal to that of analytic methods even though the greater flexibility
of these randomization approaches does come at the cost of increased computational time
and it will sometimes be necessary to produce specialized software for novel tests).
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C H A P T E R

9

General Linear Models

In the last chapter, we examined two simple models, one a linear regression and the other
a comparison of two means. It is likely obvious that we will need more complex models to
answer questions left open by those two analyses. In particular, in our analyses of alpine
chipmunk (Tamias alpinus) jaw shape, we found that both size and sex have a statistically
significant impact. What we now want to know is whether sex has a significant impact on
shape, controlling for size, and whether alpine chipmunk jaws are sexually dimorphic in
their response to size. To answer these questions we need more complex models but, like
the simple models that we already presented, these more complex ones are all examples of
General Linear Models, which have important features in common. One common feature is
that we can test the statistical significance of the models using F-tests, and a second common
feature is that we can state how much of the variation is explained both by the model and by
error by variance partitioning. It turns out that a wide range of models can be analyzed using
the same general approach, including the models used in Analysis of Variance (ANOVA),
Analysis of Covariance (ANCOVA), Multivariate Analysis of Variance (MANOVA),
Multivariate Analysis of Covariance (MANCOVA), Multiple Regression (and so forth). This
list might not actually seem impressively long, but some of these procedures admit to
numerous designs (many of which have names and apparently specialized methods to fit).
But, despite their diversity, all can be viewed as cases of the General Linear Model. Because
some of the named models have multiple names (owing to the diversity of fields that have
used them), we will try to alert you to the multiple terms for a single model or concept.

General Linear Models comprise a broad class of predictive mathematical models
employed in statistics which, as is evident from their name, are linear. More specifically,
they are linear in their fitted parameters. What this means is that any change in the predicted
outcome is linearly related to a change in the fitted parameters. For example, if we change
a parameter by some value δ, resulting in a change of Δ in the predicted value, then a
change of 2δ in the parameter will produce a change of 2Δ in the predicted value. The
most common of the general linear models is the univariate linear regression model:

Y5mX1 b1 ε (9.1)
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which is clearly linear in both fitted parameters, m and b.
A function such as:

Y5mex 1 ε (9.2)

is still linear in the fitted parameter m, even if not in the independent variable X. Because
it is linear in m, this expression is an example of a General Linear Model. However, an
expression such as:

Y5meαX 1 ε (9.3)

is not within the family of General Linear Models because it is not linear in the fitted
parameter α.

Working with General Linear Models allows us to use a wide range of models, but we
are most likely to be interested in simple extensions of the linear regression model that we
discussed in the last chapter. From that starting point, we can build more complex models
by incorporating both continuous and additional categorical independent variables. For
example, our response variable, Y, might depend on categorical factors A and B plus a
continuous variable X, as well as on the unknown sources of the error term ε. This depen-
dence is written as:

Yi 5Ai 1Bi 1Ai 3Bi 1βxðA;B;A3BÞXi 1 εi (9.4)

where Yi is the dependent variable (either univariate or multivariate) for the ith specimen.
Yi can be either a simple number (a scalar), such as centroid size, or a vector of K real
values for multivariate data, such as shape. A and B are categorical variables, which are
usually termed “factors” and X is a continuous variable, which is often termed a “covari-
ate”. “Ai3Bi“ is known as a “crossed” or “interaction” term, meaning that factor A’s
impact on Yi depends on Yi’s value on factor B. In this model, the slope term, βx, is a func-
tion of A, B and the interaction term A3B. In the univariate case, the fitted terms Ai, Bi,
Ai3Bi and βx(A, B, A3B) are scalars whereas in the multivariate case, they are vectors
having as many coefficients as there are variables, and so is the error term εi. The covari-
ates Xi and Z, however, are univariate in each case.

Just as we saw in our discussion of ANOVA in the last chapter, the factors are cate-
gorical variables such as sex, diet class or species, and the covariates are continuously-
valued variables such as size, position along a geographic transect or fitness, etc.
Throughout this chapter we will assume that the continuous variables (Y and X) are cen-
tered, i.e. their mean values are zero. When these variables are not centered, the model
would include an explicit term for the mean value (and the data would have an addi-
tional degree of freedom that is lost in the process of centering). In the case of shape
data, Y is typically shape, expressed in terms of the difference in shape between each
specimen and the mean. Each factor has two or more levels (i.e. distinct values of the
factor) corresponding to the number of groups. For example, in the case of sexual dimor-
phism that we discussed in the last chapter, the factor is sex, which has two levels:
“male” and “female”. Many factors have more than two levels; habitat, for example, has
(among other possibilities): “montane”, “mid-elevation”, “desert”, “lacustrine”, “river-
ine”, “marine,” etc.
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We can use the model presented in Equation 9.4 to ask a series of questions such as: (1)
Does shape (Y) depend on either or both of the factors A and B? (2) Is there an interaction
between the factors? (3) Does shape depend on a covariate X? (4) Does the slope of Y on X
depend on one or both of the factors? (5) Does the slope depend on the interaction
between the two factors? As well as asking such “yes” or “no” questions, we can also ask
what fraction of the total variation in shape is explained by each term, factor and covari-
ate. The set of techniques collectively used to answer such question is known as General
Linear Models (GLM).

GLM include a variety of models, such as the linear regression and two group compari-
sons of the last chapter, plus techniques such as analysis of variance (ANOVA), analysis
of covariance (ANCOVA) and their multivariate equivalents, multivariate analysis of vari-
ance (MANOVA), multivariate analysis of covariance (MANCOVA), multiple regression,
and a range of other models (that do not all have names). The model described above,
which has two factors, A and B and a covariate X, would be called a two-factor ANCOVA
(or MANCOVA). Like the family of ANOVA methods, GLM methods use the distribution
of sums of squares (or mean squares), which are proportional to the variance contributed
by each factor (and covariate) plus the error terms. When the data are univariate, the sums
of squares are scalars but when the data are multivariate, they are matrices “sums of
squares and cross products” (SSCP) matrices. Whether univariate or multivariate, sums of
squares are used to form F-ratios for hypothesis testing and to estimate (and decompose)
the variation explained. Whether the data are univariate or multivariate, the error term (ε)
represents the residual unexplained variance or “noise”. Different methods are required
when using SSCP matrices for hypothesis testing, but the fundamental concepts are the
same in both the univariate and multivariate case.

This chapter will discuss GLM, beginning with applications to univariate data to lay the
foundation, then extending them to multivariate data. We consider both classical statistical
models and those tested by permuting the data. We begin with a general overview of fac-
tors and experimental design because that design has a major impact on the efficacy of
these statistical methods. One of the most important considerations is the number of fac-
tors to be tested because the number of interaction terms grows with the number of fac-
tors. For example, in a model containing three factors (A, B and C) there are four
interaction terms, A3B, A3C, B3C and A3B3C. Adding a fourth factor increases the
number of interaction terms to 11 and so on. The rapid growth of interaction terms, and
the attendant increase in the number of parameters that must be estimated, makes the
effective use of complex models a daunting task even though they are powerful.

FACTORS AND EXPERIMENTAL DESIGN

The nature of the factors in a particular experiment, and the manner in which data
are collected will both have a major impact on how the data can be analyzed as well as
the types of questions that can be addressed effectively. We first explain the distinction
between fixed and random factors, then the distinction between crossed and nested factors
and then the distinction between main effects and interactions. After that, we focus on
the distinction between balanced and unbalanced designs because the procedures for
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analyzing unbalanced designs can be disappointingly uncertain (Searle, 2006).
Although permutation methods will be helpful in many applications involving shape
data, they share many of the limitations of classical analytic methods. Thus, the impact
of unbalanced designs should be considered when designing the study to avoid being
forced to confront the problems they pose after the data are collected. It can be very
disheartening to contemplate leaving out measured individuals or even factors to bal-
ance the data.

Fixed and Random Factors

The distinction between fixed and random factors can be both subtle and difficult to
explain because the same factor can be either fixed or random depending on context. In
general, when we are interested in the specific factors and can collect data on all relevant
levels of the factor, then the factor can be treated as fixed. In contrast, when the factors are
not of particular interest in their own right, and the levels that are measured are a random
sample of the levels that could have been measured, the factor is treated as random. In
general, in the case of a random factor, the factor itself might not be of any special interest
but it is one that needs to be taken into account when testing hypotheses about the fixed
factors. Random factors are sometimes viewed as “nuisance terms” because they are both
uninteresting and contribute to variation in the sample.

To make this distinction more concrete, we can consider two cases in which the same
factor is either fixed or random depending on the specifics of the question being asked. In
the first case, suppose that we want to test the hypothesis that the shapes of fly wings
depend on altitude and sex. We have sampled both sexes at three altitudes, and we have
sampled them at different times (although we made sure to sample both sexes, and flies at
all altitudes, at the same times). We are not interested in seasonality of shape, but we
might nonetheless suspect that the season in which the flies were collected might affect
wing shape, and that flies at higher altitudes might be differently affected by season than
those at lower altitudes. Thus, even though we are not interested in time, we need to con-
sider the possibility that some of the variation within the sample is temporal. In that case,
habitat and sex would be fixed factors, but time would be random. The dependence of
shape on time is not a hypothesis that we wish to test, nor have we exhaustively sampled
(or controlled) for it. We have merely taken a sample of shapes at several times. We do
not particularly care when any sample was collected � we only care that they were col-
lected at different times. As a result, we want to know how much of the variation is due
to collecting date, but we do not care whether the flies collected at one particular time dif-
fer significantly from those collected at another specific time. In this context, time is
merely a nuisance variable because it could explain some of the variance in the sample;
including it as a term in the model is important both to avoid ascribing the variation
explained by it to one of the fixed factors of interest, and to lessen the unexplained varia-
tion in the data (by explaining it). In contrast, say that we do want to know whether time
has an impact on wing shape. We may want to know whether high and low altitude flies,
of either sex, respond to climate change, and if that response depends on altitude or sex.
In this case, time would be a fixed factor. Thus, whether a factor is fixed or random
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depends on what hypothesis one intends to test, and exactly how data collection is struc-
tured. It is not a feature of the variable itself.

Typically, the statistical significance of random factors is not the hypothesis that really
interests us. Those factors are measured simply to determine how much variation can be
attributed to them. We might also want to quantify the variance explained by fixed factors,
and doing so may seem to blur the distinction between the two kinds of factors. The dis-
tinction, however, remains important, especially when a study contains both fixed and
random factors because the denominator of the F-ratio depends on whether the factor is
random or fixed.

Crossed and Nested Factors

In the examples presented above, we measured males and females at all altitudes in all
years. At least in principle, any individual could have been allocated to any “treatment”
(by nature if not by us). In some cases, all the individuals at one level on one factor are
also all at the same level on another. For example, in an experiment on the impact of die-
tary consistency on mandible morphology, infant deer mice could not be removed from
their mothers and raised by different mothers (Myers et al., 1996). Consequently, all sib-
lings ate the same food. That is important because we would expect siblings to be more
similar to each other than to unrelated mice not only because they eat the same diet but
also because they are genetically related to each other and share the same uterine and nes-
tling environment. There are many families that eat the same diet, but no families eat
more than one diet. Thus, within any single level of the diet factor there are many families,
but at any single level of the family factor there is only one diet. In this case, family is
nested within the diet factor. Because variation among families may contribute substan-
tially to the variation in shape, this source of variation needs to be taken into account
when assessing the impact of diet on shape. As may be obvious, we are not particularly
interested in whether family A differs from family B, or from any other family. All that we
care about is whether variation among families contributes to variation in shape, and
whether all families respond similarly to diet, making it safe to generalize about the
impact of dietary consistency on shape.

To take another sample, suppose that we are rearing fish in a large number of tanks to
test for the impact of water temperature on body shape. For each temperature, we have
multiple tanks but (obviously) all the fish within any given tank are reared at the same
temperature. We want to assess the impact of water temperature on body shape and to
ensure that our result is general rather than depending on the particular tank in which the
fish were reared. Because the fish within the same tank may have something in common
aside from the temperature of rearing, and that common feature might vary across tanks
even if water temperature does not vary, that other (unmeasured) factor could contribute
to the variation among fish. It might contribute both to the variation among fish reared at
the same temperature and to the response of the fish to water temperature. Although we
do not care whether the fish in one tank differ, on average, from the fish in any other spe-
cific tank, we do care whether variation among tanks contributes to our experimental error
and, even more importantly, whether the response to the factor of interest depends on the
nested term. Again, the nested factor is also a random factor.
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Whether factors are fixed or random is important to the statistical design, as is whether
factors are crossed or nested. The distinction between fixed and random is important
because the question asked about fixed factors is whether the average shapes differ across
those specific levels. In this case, there is no experimental error associated with the selec-
tion or measurement of the levels. The levels are not randomly selected hence we do not
have to consider the random variation among them. But when the factor is random, the
levels we sample are random samples of the factor and it is therefore measured with error
(just like the dependent variable is). Hence there is an error term associated with the mea-
surement of the factor, just as there is with any random variable. That adds an additional
error term to the model. Even though the numerical values for each level do not depend
on whether the factor is fixed or random, there is an additional population parameter to
estimate when the factor is random. Whether factors are crossed or nested is important
not only because the nested terms are random but also because nesting affects the design
of the statistical test; as we discuss in more detail below, when we design a scheme for
permuting observations, the individuals being permuted must be equivalent to each other
in order to be exchangeable. Rather than exchanging individuals as if they were all equiva-
lent to each other, levels of the nested factor are the equivalent units (and therefore the
exchangeable ones). For example, rather than permuting all the deer mice as if they each
were equivalent to any other, we would permute whole litters.

Main Effects and Interaction Terms

The impact of each factor, considered one at a time, is known as a “main effect”. For
example, the impact of diet on shape is a main effect of diet. If we have just one factor,
that one main effect is all that concerns us (other than error). But when we have two or
more factors, both factors will have main effects and it is also possible that the two factors
interact. If they interact, the impact of one factor depends on the level of the other. For
example, consider those male and female flies that we collected at different altitudes. We
might find that females differ from males in their response to altitude. That differential
response is the interaction effect � the effect of one factor (altitude) depends on the level
of the other (sex). When the interaction term is significant, then we cannot generalize
about the effect of the main factor because its effect is conditional on another factor. We
could say that altitude’s effect on female shape is general (so long as that does not also
depend on the impact of time) but we cannot say that altitude’s effect on shape is general
because it is not � it depends on sex. In general, we would not interpret main effects in
the presence of interactions. When the design is unbalanced, meaning that the sample
sizes are not equal for all the levels in the analysis, it can be difficult to partition main
effects and interactions.

Decomposition of Variance

We often need to decompose the variation of the dependent variable (shape) into the
contributions made by the factors, covariate(s), interaction terms and error. This decompo-
sition is done by determining the variation explained by the combinations or subsets of
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the total model. Differences in the variance explained by the various combinations of inde-
pendent variables sort out (i.e. decompose) the variance into the portions explained by
each term of the model. Or perhaps we should say that they do so under ideal experimen-
tal conditions, including an ideal (i.e. balanced) design. Significance testing of each contri-
bution is done using F-tests, which are ratios between the variances explained by different
terms. As discussed earlier, variance can be characterized using variance�covariance
matrices (based on SSCP), or squared Procrustes distances, and there are both analytic and
numerical approaches to estimating significances of the observed F-ratios, which will be
discussed later. The important feature here is that all of this depends on being able to
decompose variance.

Balanced and Unbalanced Design

In a balanced design, each possible combination of levels of the various factors has the
same sample size. If we lay the factors out along the rows and columns of a matrix, each
“cell” in that matrix is a unique combination of levels of all factors. In a balanced design,
the number of individuals within all cells is equal. For example, say that we have two fac-
tors, handedness and sex. The levels of handedness are right-handed and left-handed, and
the levels of sex are male and female. In a balanced design, we would have equal numbers
of right- and left-handed individuals and equal numbers of males and females; and fur-
thermore, equal numbers of right-handed females, left-handed females, right-handed
males and left-handed males). But we can see that numbers are not equal in all cells of
Table 9.1. We have equal numbers of right- and left-handed females but we have an
excess of right-handed males. This kind of design is called “unbalanced”.

Unbalanced designs present serious problems for statistical analyses because the
experimental design, not biology, induces a correlation between factors. In this case,
handedness is correlated with sex. If the sex of a particular specimen is female, then the
chances are equal that the individual is right- or left-handed but that is not the case for
males. For males, the chance of being right handed is 70%. That is a problem for the fol-
lowing reason. Suppose that being right-handed causes a detectable change in shape of
the hand (or other part of the limb or even the brain). If we compare the variance
explained by sex, without considering handedness, we would see that on average, most
men had the shape associated with right-handedness (because 70% of the males
are right-handed). In contrast, the average female would not have that shape because
half do and half do not. If we were to consider handedness alone, we would see the
impact of being right-handed, but it would be difficult to tell if that effect was due to

TABLE 9.1 Number of Individuals Sampled by Sex and Handedness

Sex Handedness

Right Left

Female 50 50

Male 70 30
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being right-handed or male. Whereas the right-handed sample is biased toward males,
the left-handed sample is biased toward females. As a result, it is difficult to conclude
that any difference found between right- and left-handed samples is due purely to hand-
edness. Part of the difference could instead be due to sex. In effect, the two factors are
confounded by the experimental design, making it difficult to separate the effects of the
factors and also to estimate the terms.

Unfortunately, unbalanced designs are far more common in biological studies than
balanced ones. In some cases, the design might have been balanced at the outset of the
experiment, but it becomes unbalanced when the organisms die or escape or when speci-
mens are damaged in the process of capture or preparation. In field studies, animals may
wander away from the study plots or be uncatchable on any given day. In observation of
museum collections, the number of specimens that can be used to estimate the levels of a
factor depends on the number of undamaged specimens at those levels contained in the
collection(s).

It is possible to ensure having a balanced design by restricting the number of indivi-
duals in each cell to the number contained in the smallest cell. For example, to obtain a
balanced design for our analysis of sexual dimorphism in the last chapter, we removed
the excess females to equalize the numbers of males and females. Had we added another
factor to the design, such as whether the animals came from the Yosemite area or the
southern Sierras, we would have ended up with only 24 animals per cell because there are
only 24 males from the southern Sierras. Balancing a design by randomly leaving out spe-
cimens is sometimes recommended as an alternative to using an unbalanced design
(Underwood, 1997). The reason for recommending a balanced design, even if that means
leaving out data, is not that sums of squares cannot be calculated. Rather, it is that the
results can be difficult to interpret. Additionally, the fact that the factors are confounded
raises problems for the analysis and there is some controversy about the best procedure to
use for calculating sums of squares for unbalanced designs (an overview of some proce-
dures is given below, in Unbalanced Designs and Sums of Squares).

DESIGN MATRICES

Design matrices play a crucial role in the statistical analysis because, as is obvious from
their name, they encode the design of the study. The design matrix contains the informa-
tion about the number of factors, the levels of each factor, the number of distinct combina-
tions of factors in each interaction term, etc. This matrix is often called the “X” matrix
because it is represented by X in the following expression, which is a strikingly compact
equation that applies to a wide range of models, both univariate and multivariate. It may
appear to be complex because it is written in terms of matrices, but the pay-off is the abil-
ity to formulate virtually any linear model in the following form:

Y5XB1 ε (9.5)

In this expression, Y is the centered data matrix for the dependent variable (typically
shape in our case). Because the data are centered, the mean of each column is zero and
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Y contains the deviations of each individual from the overall mean. B is the matrix of coef-
ficients of the model, which will be fitted to the data, X is the centered design matrix and
ε is the matrix of residuals or error terms. If Y is a matrix with N rows (one per specimen)
and Q columns, the matrix of residuals, ε, will also have N rows and Q columns. The size
of the design matrix, X, C3N, depends on the design, i.e. on the number of factors, the
number of levels of each factor and the number of distinct combinations of factors in any
interaction terms, as well as the number of interaction with covariates. It can also depend
on how the model is coded because the number of columns, ignoring interaction terms for
the moment, could either equal G2 1 (where G is the number of groups) or G. It takes
G2 1 columns to specify the design, so using G columns makes the coding scheme redun-
dant (and the X matrix is then not invertible). We will therefore focus on design matrices
that have G2 1 columns.

To understand the codes, it is important to remember that we are using regression to
analyze categorical factors. We therefore need values for the categorical factors that make
the results of the regression interpretable. One coding method is called “dummy coding”.
According to this method, all individuals are coded as either a zero or one to indicate each
individual’s level on each categorical factor; including all interaction terms. Which group
is coded as zero or one is arbitrary, but the interpretation depends on the codes because
the intercept is the mean of the group coded as zero. Usually, the control group is the one
coded zero and the null hypothesis is that the means of the other groups do not differ
from the mean of the control group. The coefficients for the other groups give the devia-
tions from the control group mean. If there are three groups, it takes two columns to
encode a single factor; all individuals belonging to the first group will have ones in the
first column and zeros in the second, all individuals belonging to the second group will
have zeros in the first column and ones in the second and all individuals belonging to the
third group will have zeros in both columns. To obtain the codes for the interaction terms,
the columns of codes for the factors are multiplied by each other. Coding can become
complex when factors are nested, so the X matrices for these more complex designs are
discussed later in context of the more complex models.

An alternative coding method is called “effect coding”; according to this method, all
individuals are coded as negative one, zero, or positive one. If there are only two groups,
the first one is coded as 21, the other as 1, and if the design is balanced, the mean for the
column is zero. If there are three groups, the first is coded as21, the last as 1, and the sec-
ond by 0; in the second column, the first group is coded as 0, the second as 21, and the
third as 1. Using this method, the intercept is the grand mean and X1 is the deviation of
the first group from that mean, X2 is the deviation of the second group from that same
mean, etc. So, when testing the statistical significance of the coefficients for X, we are test-
ing the null hypothesis that one group does not differ from the grand mean by more than
expected by chance. As mentioned above, the codes for interaction terms are obtained by
multiplying the columns for the interacting factors.

Coding is more difficult when the design is unbalanced for a reason that may become
obvious if you consider that the grand mean will not be zero when there are different
numbers of positive and negative ones. The codes will therefore have to be modified to
ensure that the grand mean is still zero and that the columns of X are mutually orthogo-
nal. One approach is to code the first group as (N2 ni)/N where ni is the number of
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individuals in that group and N is the total sample size. So, if there are 10 individuals in
the first group, and 100 total, the code for the first group is (1002 10)/100 or 0.9. Then all
other individuals will be coded as2 ni/N which, for our example, would yield210/100 or
20.1. As a result, we would have 10 individuals coded 0.9 and 90 coded as 20.1, so the
sum of the codes for that column equals zero. In the next column, the ni term would be
the number of individuals in the second group, and so forth. As you might imagine, cod-
ing a design matrix can become very tedious, and error-prone, when there are many
groups and factors. Fortunately, there are programs that can do this for you. Two of them,
the model.matrix function in the stats package in R (R_Development_Core _Team, 2011),
and XMatrix (Anderson, 2003), are discussed in the workbook.

THE FORM OF A GENERAL LINEAR MODEL

In general, X will have N rows and C columns and will also be a centered matrix. For a
simple linear regression model or, as discussed above, for a single factor model with only
two levels, X would be an N row by one column (N3 1) matrix. The fitted parameters of
the model are in a K by C matrix B. Different models are expressed by how we form the
design matrix X.

The value of B is then estimated from:

B5 ðX0XÞ21X0Y (9.6)

where X0 denotes a matrix transposition, and X21 indicates a matrix inversions.
The value of the Y matrix predicted by the model is:

Ypred 5XB5HY (9.7)

where H5X(X0X)21X0 and the residuals may be estimated as:

ε5Y2Ypred 5YðI2HÞ (9.8)

where I is the identity matrix. As we have required that the matrices be centered, the orig-
inal sum of squares and cross products matrix in the data may be calculated as:

SStotal 5Y0Y (9.9)

where Y0 is the transpose of Y. If we are dealing with univariate data, this is simply called
the sum of squares, a scalar value. For multivariate data, the diagonal of the matrix is the
sum of squares for each variable and the off-diagonals are the cross products. If we divided
the SStotal by (n2 1), the degrees of freedom, we have the variance or the variance�covariance
matrix of the data. The residual or error sum of squares may be calculated as:

SSerror 5 ε0ε (9.10)

The sum of square matrix explained by any given model may be found as:

SSmodel 5SStotal 2SSerror (9.11)
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In addition to being a very simple looking expression even when the model is complex,
the approach based on matrix methods is relatively straightforward to implement in
software.

F-TESTS AND MEAN SQUARES

We can write out expressions for the mean squares for the model or submodels (discussed
in more detail below), based on the assumption that the model is true. These terms are just
the sum of squares divided by the degrees of freedom in the model. It will turn out that the
mean square terms of the various subsets of the model are typically related to one another in
simple additive ways, meaning that models that differ only by additions of terms will be
identical in their predicted mean square (EMS) values for terms common to all the models
(at least for balanced designs). So, if we have two models that differ only by one factor, the
model that contains that factor would be termed the “full model” and the model lacking it
would be known as the “reduced model”; the ratio of the MS values for these two models, is
the F-ratio for the two models, just as it is when the MS of one factor is compared to error
MS. Both F-ratios can be assessed for their statistical significance using either analytic or
resampling methods, just as in the case of a linear regression model. When the design is
unbalanced, the situation is more complex because, depending on the approach taken, either
the expressions depend on the sample size in each cell or the sums of squares for the terms
will not add up to the total sums of squares. We will therefore defer consideration of unbal-
anced designs until we have more fully discussed the simpler case of balanced designs.

In the case of univariate data, the sum of squares and the mean squares are simple scalar
values, so forming F-ratios is simple and obvious. That is not the case for multivariate data.
There is a number of approaches to working with the sum of squares and cross products
(SSCP) matrices that arise from the matrix methods discussed above. Alternatively, it is pos-
sible to use permutation-based approaches based on summed squared Procrustes distances,
using the “outer sum” method developed by Anderson and colleagues (Anderson, 2001a,b;
Anderson and Robinson, 2001), discussed in more detail below. Rather than tackling the sev-
eral related topics all at once (i.e. how to calculate mean squares, the relevant F-ratios for
both balanced and unbalanced designs and the extension of these procedures to multivariate
data), we instead start by looking at a few types of models, applying them to univariate
data. After laying this foundation, we discuss unbalanced designs. Thereafter, we review a
range of experimental designs and give the expected mean squares and F-tests. We then
extend the models to multivariate data and then explain the permutation tests.

Univariate Data with One Factor

In this section, we examine the development of a GLM for a univariate variable Y that
is hypothesized to depend on a single fixed factor A. We show one approach to calculating
variances based on sums of squares, using the estimated means of the specimens in each
level of the factor A. This approach is conceptually easy to understand, but it is not in the
matrix notation presented earlier, and it is not the approach used in most computer-based
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calculations because most modern approaches to calculating sums of squares are based on
matrix algebra. Thus, they use the difference between sums of squares explained by differ-
ent models expressed in terms of design matrices. The simple summation methods are eas-
ier to understand at an introductory level, but harder to scale up to large problems and
probably more prone to rounding errors. Researchers interested in programming their
own GLM methods will need to consult more advanced texts to develop a complete
understanding of these approaches (Rencher, 1995; Searle, 1997, 2006; Anderson, 2001a,b;
Rencher and Schaalje, 2008).

Let us suppose that Y has J distinct levels and nj specimens per cell. We won’t require a
balanced design at this point but we will require that Y be centered (i.e. the mean value is
zero), removing one degree of freedom. For the ith specimen in cell j we have the model

Yij 5αj 1 εij (9.12)

where αj is the contribution of the jth level of the factor to the value, and εij is the error.
Notice that we require that the mean value of the residual terms εij be zero, with variance
σe

2, and the mean value of Y is zero (because Y is centered). Consequently, the njαj terms
summed over all the cells must also equal zero:

XJ

j51

njαj 5 0 (9.13)

This means that there are J values αj but only (J2 1) are independent because, as men-
tioned above, constraining the sum to be zero removes one degree of freedom.

We can now look at variance partitioning to understand how to form F-ratios. We start
by looking at the summed square values around the mean value, which is Y, then we split
these sums of squares into two terms, one due to the scatter about the mean of each group
(level of the factor Yj), and the other due to the scatter of the group means about the grand
mean. The total sum of squares is:

SStotal 5
XJ

j51

Xnj

i51

ðYij2YÞ2 5
XJ

j51

Xk

i51

ðYij2YjÞ2 1
XJ

j51

njðYj2YÞ2 (9.14)

Note that Y must be zero; we have included Y here so that our expression for the SS
will be consistent with the other standard presentations of these ideas.

The first term represents the error and the second is the SS due to A (the between
groups of factor sum of squares).

SSerror 5
XJ

j51

Xk

i51

ðYij2YjÞ2 (9.15)

The SSerror term, also called the residuals, has an expected value equal to the degrees of
freedom times σe

2. The degrees of freedom in the error term are given by:

dferror 5
XJ

j51

nj 2 J (9.16)
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The expected mean square error (or the expected mean square residual) is then esti-
mated as

MSerror 5
SSerror
dferror

(9.17)

whose expected value (EMSerror) is σe
2. In contrast to the mean square (MS) term, which is

calculated from the data, the expected mean square (EMS) is calculated from the model. If
the model does describe the data, the MS and the EMS should be similar, differing only by
relatively minor random variation.

The sum of squares for the between groups term, or that contributed by the factor A
(when Y5 0) is

SSA 5
XJ

j51

njY
2

j (9.18)

The mean square value is estimated as MSA5 SSA/(J2 1) because the degrees of free-
dom are dfA5 (J2 1). The expected mean square (EMSA) has two contributions, a pooled
variance of the error terms across the groups plus a component representing the squared
effects of the factors:

EMSA 5σ2
e 1

XJ

j51

nj
α2
j

ðJ2 1Þ (9.19)

The null hypothesis we want to test is that the factor A does not contribute to the value
of Y. Having constrained the mean of Y to be zero, the null hypothesis is therefore that the
αj values are all equal and are, in fact, all equal to zero. Under these conditions, the
expected mean square value of EMSA is simply σe

2. The F-ratio of the variance explained
by the model relative to the error or residual variance is then expected to be 1 should the
null hypothesis be true. Consequently, we can compute the F-ratio based on the data as:

F5
MSA
MSerror

5
SSA=dfA

SSerror=dferror
(9.20)

which will follow an F-distribution with degrees of freedom dfA, dferror. Notice that the F-
ratio is the variance explained by the model divided by the unexplained variance, just as
it was when we applied F-tests to regression models, or used Goodall’s F-test to compare
the mean shapes of two groups. Because the expected mean term in the numerator is equal
to the denominator plus one additional term, the F-value will be larger than one if the
additional term:

XJ

j51

nj
α2
j

ðJ2 1Þ (9.21)

is not zero. A larger F-value would indicate a lower probability that the null hypothesis is
true. Rejecting the null hypothesis allows us to interpret the MSA term as the variance
explained by the factor A, and to compare that to the unexplained variance, MSerror.
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GENERALIZING AND EXTENDING THE SIMPLE UNIVARIATE
ANOVA

The simple univariate case with only one factor is only a starting point, but it neverthe-
less illustrates all the analytic procedures used by GLM methods. In all cases, we would
follow the same basic steps, albeit adapting them to multivariate data:

1. Find the sum of squares due to each term in the model and use them to determine the
variance explained by each term (when possible). When working with multivariate
shape data, there are two approaches to finding these sums of squares: (a) the sum of
squares and cross products matrix (SSCP) or (b) the summed squared Procrustes
distances between specimens. Either can be used as the multivariate equivalent to the
simple sum of squares. This can be complex when the design is unbalanced, as
discussed below.

2. Form F-ratios of different models to test the significance of the model. In the univariate
example given above, the numerator model states that factor A influences Y. The
denominator model states that Y is just a random value with variance σe

2. When we
discussed that case above, we referred to the denominator as the MSerror, but this is
really just a special case. In general, it is preferable to think of the denominator as
another possible model because the denominator will not always be MSerror. The
important idea is that the expected mean square in the numerator differs from the
expected mean square denominator only by a single term, the term that represents the
factor of interest. We want to test the significance of that factor and to construct the
appropriate test we need to derive the expected mean squares for each part of the
model. As we consider more complex models with more factors and covariates, we will
need an F-ratio for each term. Fortunately, there are many published tables that list the
expected mean squares for various models (although usually only for balanced
designs). The excellent text by Lorenzen and Anderson (1993), for example, describes
how to form sums of squares and F-ratios for a wide range of univariate, balanced
designs, which may be adapted with reasonable care to other analyses. For multivariate
data, more complex analytic approaches are needed due to the use of sums of squares
and cross products (SSCP) matrices.

3. Test the significance of the F-ratios. The tests can use sums of squares and cross products
matrices or distance based measures of sums of squares. Analytic tests are available for
the first and permutation methods are available for both, such as when Procrustes
distances are used to estimate sums of squares.

MODELS

Univariate Two Factor Balanced Design

We will now consider a case in which we have two factors, with a univariate dependent
variable Y, which depends on two factors A and B (which have p and q levels respectively).
As an example of a model of this sort, consider the alpine chipmunks that we analyzed in
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the last chapter. Because we are considering only univariate models at this point, Y would
be “size”. We have two factors; the first is “sex”, the second is “region” because the chip-
munks were sampled in two regions, the Yosemite region and the southern Sierras. So factor
Awould be “sex” and factor B would be “region”. For this case, the full model is:

Y5A1B1A3B1 ε (9.22)

A is the effect of sex on size, B is the effect of region on size and A3B is the interaction term
between sex and region, and ε is again the error term with variance σe

2 and mean zero (we
again center Y). Note that the significance of the interaction term, A3B is tested according
to the contribution that it makes to the total variance in addition to that made by the two
main effects (i.e. the contributions made by A and B, treated individually). There are a num-
ber of different possible designs for this two factor case because either A or B (or both) can
be fixed or random. In this example of sex and region, both factors are fixed. But there are
models containing two factors with one fixed and the other random; this type of model is
said to be mixed. A two-factor mixed model is also used for studies of fluctuating asymme-
try (i.e. random deviations from bilateral symmetry). There are two main effects,
“Individual” and “Side”. The first is the variation among individuals, the second is the dif-
ference between right and left sides, and the interaction term, “Individual3 Side” is the var-
iation among individuals in “sidedness”. In this case, “Individual” is a random term � we
are randomly sampling individuals and we do not particularly care whether any one indi-
vidual differs from any other in shape. “Side” is a fixed factor (because we do care about
the difference between right and left sides). In this case, it is actually the interaction term
that most interests us because our objective is to quantify fluctuating asymmetry. In some
cases, both factors are random, a common design used in quantitative-genetic studies where
the objective is to decompose the variance into the part explained by variation in genotype
and that explained by variation in environment.

When one factor is fixed and the other is random, it becomes possible to consider two dif-
ferent types of constraints on the interaction terms A3B. Remember that Y is centered, and
so the sums of all group factors (for both A and B, as in Equation 9.13) are also required to be
zero. However, there are two possibilities for the interaction terms A3B, either that the
summed interaction terms be zero (as in Equation 9.13, but summed over the interaction
terms), which is called the restricted interaction model, or alternatively that there is no restric-
tion on the interaction terms. The restricted model does imply a correlation of the interaction
terms, any two interaction terms will not be independent within a given level of B for exam-
ple (Quinn and Keough, 2002). We follow the recommendations of Quinn and Keough (2003)
and Searle et al. (1992) in presenting and using the unrestricted interaction model.

Table 9.2 shows the sums of squares for each of the terms in the model. Again, the sums
of squares are shown in a simple summation notation. The F-ratios used to test the signifi-
cance of each term in the model, for the various combinations of random and fixed factors,
are shown in Table 9.3 (note the different denominators for A and B depending on whether
the factors are fixed or random, and that the restricted model of interactions is used here),
and the calculation of the variance components for each combination is shown in Table 9.4.
Results for the analysis of the impact of sex and region on chipmunk jaw size are shown in
Table 9.5. Sex does have a significant impact on chipmunk jaw size; females’ jaws are larger
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on average than males’ jaws (74.18 mm vs 72.88 mm for females and males, respectively). In
contrast, region does not have a statistically significant impact on jaw size, nor is there any
stastistically significant interaction between sex and region. The analysis of fluctuating
asymmetry of chipmunk jaws shows that the interaction term (which is fluctuating asym-
metry) is statistically significant although the main effect of “Sides” is not (Table 9.6).

Univariate Two Factor Nested Model

In this case, one of the two factors, B, is nested within factor A, which we denote as
B(A). As an example of nesting, we earlier introduced the case of the deer mice that were
fed three diets, with all members of each litter being fed the same diet. Thus, in this case,

TABLE 9.2 Sums of Squares, Degrees of Freedom and Mean Squares for a 2 Way, Balanced Univariate
ANOVA

Source SS df MS

A SSA 5NJ
PI

i51

ðyi 2 yÞ2 I2 1 SA/(I2 1)

B SSB 5NI
PJ

J51

ðyj 2 yÞ2 J2 1 SSB/( J2 1)

A3B SSAB 5N
PI

i51

PJ

j51

ðyij 2 yi 2 yj 1 yÞ2 (I2 1)(J2 1) SSAB/( I2 1)(J2 1)

Residual SSerror 5
PN

k51

PI

i51

PJ

j51

ðyijk2yijÞ2 IJ(N2 1) SSerror/IJ(N2 1)

Total SStotal 5
PN

k51

PI

i51

PJ

j51

ðyijk 2 yÞ2 IJN2 1

There are I levels of factor A, and J levels of factor B, with N specimens per cell. The expressions of the form yi indicate means

over all cells with level i (or j, or the combination ij), while y is the overall mean of all data.

TABLE 9.3 Terms of the F-Ratio for a Univariate Two Factor, Balanced Design

Source A, B Fixed A,B Random A Fixed, B Random

A MSA/MSerror MSA/MSAB MSA/MSAB

B MSB/MSerror MSB/MSAB MSA/MSAB

A3B MSAB/MSerror MSAB/MSerror MSAB/MSerror

TABLE 9.4 Estimates of the Variances Components for a Univariate Two Factor, Balanced Design

Source A, B Fixed A,B Random A Fixed, B Random

A (MSA2MSerror)/NJ (MSA2MSAB)/NJ (MSA2MSAB)/NJ

B (MSB2MSerror)/NI (MSB2MSAB)/NI (MSB2MSerror)/NI

AB (MSAB2MSerror)/N (MSAB2MSerror)/N (MSAB2MSerror)/N

Error MSerror MSerror MSerror
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litter is the nested term (it is nested within diet). Because litter is nested within diet, we do
not find all values of “litter” for all levels of “diet” � litter 1, for example, is found only at
one level of “diet” (“liquid”) and similarly, litter 2 is found only at one level of “diet”
(“powder”). The model looks like this,

Y5A1BðAÞ1 ε (9.23)

There is no interaction term for a nested model because there are no independent contrasts
of the levels of Bwithin differing levels of A, hence we have no way to estimate the interaction
between the factors. What this means is that we have no information about the impact of a
powdered diet on litter 1, nor of a liquid diet on litter 2 and we therefore cannot determine
whether litters respond differently to diets. Table 9.7 shows a calculation of the sums of
squares, degrees of freedom and expected mean squares for a two-factor, nested design.
Table 9.8 lists the F-ratios for A and B for different combinations of fixed and random values
of A and B although, in the case of nested models, the nested term is almost invariably ran-
dom. Table 9.9 shows the results of the analysis of diet’s impact on deer mouse jaw size. Diet
does have a significant impact on jaw size when tested against the nested term “litter”.

Univariate Three Factor Model

In this case, we have distinct factors, A, B, and C. In addition to their main effects, we also
have the interaction terms: A3B, A3C, B3C and A3B3C. The model looks like this:

Y5A1B1C1A3B1A3C1B3C1A3B3C1 ε (9.24)

TABLE 9.5 A Two-Way Fixed Factor Analysis of Variance: The Impact of Sex and Region on
Chipmunk Jaw Size

Source SS df MS F P

Sex 45.57 1 45.57 22.357 0.000

Region 4.413 1 4.413 2.165 0.144

Sex3Region 0.113 1 0.113 0.056 0.814

Error 230.323 113 2.038

TABLE 9.6 A Two-Way Mixed Model Analysis of Variance: Fluctuating Asymmetry of Alpine Chipmunk
Jaw Size

Source SS df MS F P

Individual 960.08 93 10.3234 18.103 0.0001

Sides 1.34 1 1.3357 2.342 0.129

Individual3 Sides 53.04 93 0.57027 1.512 0.0089

Measurement error 70.91 188 0.37716
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A (partial) table showing how to form F-ratios for a three factor ANOVA is shown in
Table 9.10. For a more complete description of three factor ANOVAs see Quinn and
Keogh (2002) or Snedcor and Cochran (1980).

Models with Covariates

When one or more discrete factors and one or more continuous covariates are also of
interest, the general approach is to identify the form of the dependence of Y (shape) on the
covariate, and then to remove the variance in Y explained by the covariate, assuming no
interaction between the covariate and factor(s). Having removed the variance explained by
the covariate, one can then proceed to test the significance of the factors, as discussed

TABLE 9.7 Sums of Squares, Degrees of Freedom and Mean Squares for a Two-Way, Balanced, Nested
Univariate ANOVA

Source SS df MS

A SSA 5NJ
PI

i51

ðyi2yÞ2 I2 1 SSA/(I2 1 )

B(A) SSBðAÞ 5N
PI

i51

PJ

j51

ðyjðiÞ2yiÞ2 I ( J2 1) SSB(A)/I(J2 1)

Residual SSerror 5
PN

k51

PI

i51

PJ

j51

ðyijk2yjðiÞÞ2 IJ(N2 1) SSerror/IJ(N2 1)

Total SStotal 5
PN

k51

PI

i51

PJ

j51

ðyijk2yÞ2 IJN2 1

There are I levels of factor A, and J levels of factor B, which are nested within A, with N specimens per cell. The expressions of

the form yi indicate means over all cells with level i (or j, or the combination ij), while y is the overall (grand) mean of the data.

TABLE 9.8 F-Ratios and Variance Components for a Two Factor, Nested, Balanced Design

Source A Fixed, B Random A,B Fixed Component

A MSA/MSB(A) MSA/MSerror (MSA2MSB(A))/NJ

B(A) MSB(A)/MSerror MSB(A)/MSerror (MSB(A)2MSerror)/N

Error MSerror

TABLE 9.9 A Two-Way, Nested Analysis of Variance

Source SS df MS F P

Diet 0.01694 2 0.00847 4.68 0.0132

Litter (Diet) 0.10135 56 0.00181 4.203 0.000

Error 0.09774 227 0.00043

Preliminary results for the impact of dietary consistency on deer mouse jaw size. One factor; ”litter” is nested within the

other,“diet”, because all members of the same litter ate the same food.
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earlier. In the univariate case, the term “common slope model” is used to describe a homo-
geneous response to the covariate across all levels of all factors. If the responses to the
covariate are not homogeneous, meaning that there is an interaction between the covariate
and one or more factors, the variance explained by the covariate cannot be removed by
regression. In such cases, the focus of the analysis must be on the interaction between fac-
tor(s) and the covariate rather than on the main effects of the factors. In a univariate analy-
sis (ANCOVA), the typical approach is to compute the regression slopes for each level of
A and then to test the null hypothesis that the slopes do not differ by comparing values of
the derived univariate slopes (this approach does not have a simple multivariate analog).

More Complex Designs

As well as the models discussed above, there are a wide range of experimental designs
for ANOVA and MANOVA, including randomized blocks, repeated measures and partly-
nested designs (see Quinn and Keogh, 2002; Snedecor and Cochran, 1980). All of these can
be adapted for unbalanced designs, and extended to multivariate analyses permutation
based MANOVAs. Consequently, the range of existing experimental designs can be
adapted for use with shape data. We will not present an exhaustive treatment of the mod-
els; readers who need models more complex than the few presented in this text will need
to consult other sources particularly Snedecor and Cohran (1980), Quinn and Keogh (2002)
and Rencher and Schaalje (2008). The approach taken by Lorenzen and Anderson (1993) to
calculating expected mean squares and appropriate F-tests for univariate balanced designs
may prove especially helpful to readers needing designs not found in standard tables.

UNBALANCED DESIGNS AND SUMS OF SQUARES

As we noted at several points, the analysis of unbalanced designs can be complex and
there is some controversy about it. Designs can be unbalanced either because there are no

TABLE 9.10 F-Ratios for a Three Factor, Univariate, Balanced Design in Which All Factors are Fixed or
Just One is Random

Source A, B, C Fixed A,B Fixed, C Random

A MSA/MSerror MSA/MSAC

B MSB/MSerror MSB/MSBC

C MSC/MSerror MSC/MSerror

A3B MSAB/MSerror MSAB/MSABC

A3C MSAC/MSerror MSAC/MSerror

B3C MSBC/MSerror MSBC/MSerror

A3B3C MSABC/MSerror MSABC/MSerror
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observations in one or more cells, or because there are observations in all cells but the
sample sizes are unequal. We do not consider the first case here; this section concerns the
case in which the sample sizes are not equal for all cells. The difficulty posed by unbal-
anced designs arises from the fact that the factors are not orthogonal even if there are no
actual interactions among factors. That causes two problems. First, it is not possible to par-
tition the variance cleanly into the main effects of the factors. The estimates of the main
effects are ambiguous because we get different estimates depending on whether the means
are weighted by the sample size. Second, the hypotheses tested using F-ratios become
complex functions of the distribution of the sample sizes within the cells rather than being
simple statements about the impact of the factors. As a result, there is some controversy
over the meaning of the hypotheses underlying the F-tests as well as about the appropriate
sums of squares to use in the tests. Minor departures from a balanced design have less
severe consequences than more drastic departures, thus modest variation in sample sizes
is probably not a concern, particularly when using permutation methods for testing the
statistical significance of F.

There are at least six distinct approaches to calculating the sums of squares in unbal-
anced designs (for an overview see http://www.statsoft.com/textbook/general-linear-
models). We will discuss only three of them because they are the ones applicable to cases
in which every cell has at least one observation. These three types of sums of squares are
routinely called Type I, Type II, and Type III Sums of Squares (following SAS usage). We
discuss these three using a two factor model of the form:

Y5A1B1A3B1 ε (9.25)

Type I Sums of Squares

Type I sums of squares are also called sequential or hierarchical sums of squares. The
estimates for the sums of squares are obtained for each term by computing the sums of
squares for two models, the model that lacks that term and the model that includes it. The
sums of squares for the model lacking the term are subtracted from the sums of squares
for the model including it. So, for the two factor model, we would compute the sums of
squares for the model containing only A:

Y5A1 ε (9.26)

which are calculated as they would be for a balanced design. We would then compute the
sum of squares for the model containing both A and B:

Y5A1B1 ε (9.27)

which we denote as SSA1B. The Type 1 sum of squares for B is then SSBjA5 SSA1B2 SSA,
where BjA means the sum of squares due to B given the sum of squares due to A. Next
we would calculate the sum of squares due to all terms: SSA1B1AB,

Y5A1B1A3B1 ε (9.28)
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from which we would calculate the sums of squares for the interaction term (AB), given
the sums of squares for the two main factors, A and B, as:

SSABjA;B 5 SSA1B1AB 2 SSA1B (9.29)

The error, or residual, sums of squares is then estimated as:

SSerror 5 SSTotal 2 SSA1B1AB (9.30)

When using Type I sums of squares, the order in which factors are entered into the
analysis matters because the estimate for the sums of squares explained by a factor is con-
ditional on the estimate for the sums of squares for the factor(s) already in the model. As a
result, for factor A, there are two feasible estimates for its sums of squares: SSA and SSAjB.
In a three factor model we would have even more options: SSA, SSAjB and SSAjB,C. Because
the factors are confounded due to the unbalanced design, SSA would typically contain
some contribution from factor B. That contribution could be positive if A and B produce
similar changes in Y, or it could be negative if A and B produce contrasting changes in Y.
The term SSBjA is the contribution of factor B, given that we have removed the sums of
squares due to A, so it is a contingent estimate of the effects of A. The interaction term
may also be altered by the correlation between A and B.

Type 1 sums of squares are sometimes called the “improvement sums of squares”
because they are determined by the improvement in fit of the model caused by adding
each term to the model. A characteristic of Type I sums of squares is that the sums of
squares for all the terms sum to the total sum of squares (SStotal) so Type I sums of squares
yield an additive partitioning of variance, unlike the other two approaches. When comput-
ing the F-ratio, the Type I sums of squares are substituted for the sums of squares com-
puted for a balanced design.

Type II Sums of Squares

This method for computing sums of squares involves computing the sums of squares
for the model, including the factor of interest and all other factors of the same order (e.g.
all other main effects, or all other pairwise interactions or all other three-way interaction
terms), then subtracting the sums of squares for the model lacking the factor of interest
from that sum. So, for this two-factor case, to find the sums of squares for factor A,
we would first compute the sums of squares for the model containing both A and
B (SSA1B) as:

Y5A1B1 ε (9.31)

And then compute the sums of squares for the model containing only B (SSB):

Y5B1 ε (9.32)

And we would then calculate the sums of squares for A (SSA(II)) as:

SSA1B 2 SSB; (9.33)
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The notation SSA(II) means a Type II estimate of the sum of square for A (SSA refers to a
SS for A calculated in the same manner as for a balanced design).

Similarly:

SSBðIIÞ 5 SSA1B 2 SSA: (9.34)

The interaction term is computed as:

SSA3BðIIÞ 5 SSA1B1A3B 2 SSA1B (9.35)

When computing the F-ratio, the Type II sums of squares are substituted for the sums
of squares computed for a balanced design. Unlike the Type I sums of squares, Type II
sums of squares do not depend on the order in which terms at the same or lower level are
entered. In this context, “lowest” means the main effects of the factors, pairwise interaction
terms are at a higher level than the main effects, and three-way interactions are at a higher
level than pairwise interactions, etc. The contribution made by a term is assessed by com-
paring the model that contains that term to a model that lacks it. When comparing the
model for a factor to a model that lacks it, the interaction terms are omitted from the
model. Another important distinction between Type II and Type I sums of squares is that,
in the case of Type II sums of squares, the sums of squares are not additive � the sum of
all the sums of squares need not equal the total sum of squares.

Type III Sums of Squares

Type III sums of squares are also called “marginal sums of squares” because the
method is based on the marginal means: the grand mean (i.e. the overall mean) is calcu-
lated from the means of the means. To see the distinction, look again at Table 9.1 where
we tabulated the sample sizes for handedness by sex. We could compute the mean for
right-handed individuals, summing the values for the 50 right-handed females and 70
males and dividing by 120, and doing the same for the left-handed individuals: summing
the values for the 50 females and 30 males and dividing by 80. Alternatively, we could
compute the mean value for right-handed females, and the mean for right-handed males
and then compute the mean of those two means, doing the same for the left-handed
means. That second approach is the one used in computing the Type III sums of squares.

When testing hypotheses, the method based on Type III sums of squares compares the
sum of squares explained by the full model to the sum of squares explained by the model
without the factor of interest (the reduced model) so, in this case, the Type III sums of
squares for A (SSA(III)) is given by:

SSAðIIIÞ 5 SSA1B1A3B 2 SSB1AB (9.36)

Where SSA1AB is obtained by fitting

Y5B1A3B1 ε (9.37)

Similarly, the Type III sums of squares for B (SSB(III)) is given by:

SSBðIIIÞ 5 SSA1B1A3B 2 SSA1A3B (9.38)
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and the Type III sums of squares for the interaction term AB (SSAB(III)) is given by

SSABðIIIÞ 5 SSA1B1A3B 2 SSA1B (9.39)

When computing the F-ratio, the Type III sums of squares are substituted for the sums
of squares computed for a balanced design. The Type III sums of squares do not depend
on the order in which the factors are entered and do not yield an additive partitioning of
variance.

Which Sums of Squares to Use?

There is considerable controversy among statisticians regarding the merits of these vari-
ous types of sums of squares. Some authors contend that Type III sums of squares are the
appropriate ones to use, as a general rule, because the hypotheses being tested are more
straightforward, not being functions of the sample sizes for the cells (Quinn and Keogh,
2002). It is certainly true that we do not usually frame our hypotheses in terms of the num-
ber of observations per group, and hypotheses framed in those terms may indeed seem
nearly nonsensical. But, on the other hand, we usually rely on the additivity of sums of
squares when defining the main effects of the factor. That property of additivity is unique
to Type I sums of squares. An important consideration favoring Type I sums of squares
is that, if factors are confounded (or if interaction terms are statistically significant)
we would not normally interpret the main effects as if they do not depend on the design.
We will not tell you which sums of squares to use, but we suggest that, whenever possible,
examine both Type I and III sums of squares and, when using Type I sums of squares,
which are sensitive to the order in which factors are entered, enter the factors in different
orders to develop your understanding of your data.

WORKING WITH MULTIVARIATE SUM OF SQUARES

The sums of squares for multivariate data are sum of squares and cross products
(SSCP) matrices, rather than scalars. In this section, we first consider multivariate statisti-
cal approaches to testing hypotheses based on classical analytic multivariate methods and
then permutation-based methods based on inter-specimen (Procrustes) distances.

Classical Analytic Approaches to Significance Testing of GLM Models

Given a model, we can calculate the SSCP of the hypothesis that we wish to test (SSH),
a denominator SSCP (SSdenominator), which may be the residuals or some other SSCP
depending on the structure of the desired F-ratio test, as well as the total SSCP (SSTotal).
There are a range of different analytic multivariate tests based on either the relationship
between the SSCP of the hypothesis and the total, SSH(SStotal)

21 or on the relationship
between the SSCP of the hypothesis and the denominator, SSH(SSdenominator)

21 (the nega-
tive exponent indicates a matrix inversion). The SSCP matrices are assumed to follow the
multivariate distributions of partitioned Wishart matrices (Mardia et al., 1979). There are
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four major analytic test statistics: Wilk’s Lambda, Pillai’s trace, Hotelling�Lawley trace and
Roy’s largest root, all based on the properties of the eigenvalues of these matrices (Quinn
and Keogh, 2002). Pillai’s trace is thought to be the most robust (Johnson and Field, 1993),
but all the tests should converge in the large sample limit. The analytic models used in the
tests based on these statistics assume that the SSCP matrices follow the Wishart distribution,
which means that the matrices are of the form SS5Y0Y where Y is a centered matrix (i.e.
the column means are equal to zero) with identically distributed normal distributions of all
elements in Y. The variances need not be equal across all the variables and they can also be
correlated and the tests are thought to be reasonably robust to violations of the assumption
of normality, although tests of normality are available. The methods also assume equality of
the error variance�covariance matrices within each factor. Details of these tests may be
found elsewhere (Mardia et al., 1979; Rencher, 1995; Searle, 1997, 2006; Quinn and Keogh,
2002; and references therein) and most software packages that carry out GLM or MANOVA
or MANCOVA will report several, if not all, of these tests.

For the statistical analysis of shape data, the major issue is the need to estimate these
matrices accurately, and to invert the sum of square and cross products matrices. A matrix
cannot be inverted unless it is of full rank, which will not be the case when there are fewer
degrees of freedom in the data than there are measured variables. Even when the degrees of
freedom are relatively close to the number of variables, these tests can yield wildly inaccurate
results when applied to relatively small data sets. One of us (HDS) has observed a substantial
overestimate of the variance explained by factors that are estimated using SSCP matrices at a
sample size roughly two to three times the degrees of freedom in the data set. One rule of
thumb is that we need four times the number of specimens as landmarks (Bookstein, 1996).
When the data contain a large number of semilandmarks, it will be difficult to invert these
SSCP matrices and even if we have only landmarks we will still have more variables than
degrees of freedom. Using semilandmarks exacerbates the problem because semilandmarks,
in two dimensions have two coordinates but only one degree of freedom, and using enough
semilandmarks to get good coverage of the morphology increases the number of specimens
needed to estimates the SSCP. For these reasons, permutation methods based on Procrustes
distances appear to be more useful approaches for shape data.

PERMUTATION APPROACHES TO GENERAL LINEAR MODELS

McArdle and Anderson (2001) note that the information contained in the sum of
squares and cross products matrix, SSTotal5Y0Y, of any centered matrix, which is also
referred to as the “inner product” matrix, is also contained in the “outer product” matrix
YY0, obtained from the matrix of pairwise distances among the n specimens. One approach
to hypothesis testing follows from this, which is to form pseudo F statistics (McArdle and
Anderson, 2001). Remember that a single factor MANOVA based on the model

Y5XB1 ε (9.40)

has an F-test of the form:

F5 ½ðSSHÞ=ðJ2 1Þ�=½ðSSerrorÞ=ðn2 JÞ� (9.41)
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McArdle and Anderson then discuss pseudo F-tests of the form:

F5 trðSSHÞ=ðJ2 1ÞÞ=ðtrðSSerrorÞ=ðn2 JÞÞ (9.42)

where the trace is simply the sum along the diagonal of the matrix. The pseudo F-test thus
does not require a matrix inversion. The calculation of the SSCP is based on the
partitioning:

trðSSTotalÞ5 trðSSHÞ1 trðSSerrorÞ (9.43)

where SStotal5Y0Y, ε5Y(I2H), where Ypred5XB5HY and H is X(X0X)21X0

so that SS under the hypothesis is

SSH 5Y0Y2 ε0ε (9.44)

and the F-ratio is formed from the trace of the SSCP matrices of the J groups and of error
sum of squares (for n specimens and J levels). In more complex factorial designs, the terms
in the F-ratio would be the same as those of the univariate F, but would use the trace of
the related SSCP instead of the univariate SS. We can therefore consider how to carry out
the partitioning and formation of F-tests based on the outer product matrix YY0, which
may be derived from the matrix of all pairwise interspecimen distances. In studies of
shape, that distance will typically be the Procrustes distance, although the methods are
more widely applicable to any distance metric.

Expressing GLM Models in Terms of Distance Matrices A and B for Which We
Can Compute Both AB and BA

trðABÞ5 trðBAÞ (9.45)

then

trðY0YÞ5 trðYY0Þ (9.46)

and we can partition tr(YY0) as

trðYY0Þ5 trðYpredYpred0 Þ1 trðε=ε0Þ (9.47)

Noting that YpredYpred
0 5H(YY0)H0 and ε ε0 5 (I2H)YY0(I2H)0, we can partition YY0 by

simply using YY0 and H. We don’t need to know Y, in fact, we need only YY0, which can
be obtained from the matrix of all pairwise inter-specimen distances (D).

Given D we can compute A, whose elements are αij521/2dij
2, and then we can calcu-

late Gower’s centered matrix G from A

G5 ðI2ð1=nÞII0ÞAðI2ð1=nÞII0Þ (9.48)

and YY0 5G. This means that if we have any matrix of interspecimen distances, we can
write it in squared, centered form, and use it in the same manner as an SSCP matrix, i.e.
as a way of describing the variance�covariance structure (the SSCP matrix is simply a
multiple of the variance�covariance matrix). Using the distance matrix and the related
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pseudo-F-test(s) in permutation tests, allows us to test the same types of GLM and
MANOVA models that are tested using the analytic methods.

In calculating these mean squares, we typically use the univariate degrees of freedom
rather than multiplying the univariate degrees of freedom by the dimensionality of the
data (e.g. 2K2 4 for K landmarks in two dimensions, 3K2 7 for K landmarks in three
dimensions, etc.). It therefore seems reasonable to ask whether the multivariate degrees of
freedom should also be used in calculating means squares. There are two reasons why
they do not seem necessary. The first is that we chose to think of variance as a property of
the configuration, not of each coordinate separately. Consequently, dividing the sums of
squares by the univariate degrees of freedom gives a mean square that represents the con-
tribution that an individual makes to the variance rather than the contribution made by a
landmark coordinate. The second is that we are using F-ratios, and the numerator and
denominator both are altered by the same multiplicative factor so it does not matter
whether we use the multivariate or univariate degrees of freedom. Moreover, we are using
permutations to test the statistical significance of F, and the degrees of freedom do not
enter into those tests. However, the degrees of freedom are important if we use analytic
tests. When using analytic multivariate tests, the degrees of freedom should be the multi-
variate degrees of freedom.

Permutation Tests Based on the Distance Matrix

When we want to test a particular null hypothesis, there is an implied statement about
the exchangeability of specimens if the null hypothesis is true (Anderson, 2001a,b). If we
want to test the significance of a particular factor (A), then the null hypothesis is that spe-
cimens belonging to different levels of this particular factor (Ai) could be exchanged with
one another and, if the null hypothesis is true, this should not alter the sums of squares
predicted by the model in any significant way. So, to test the null hypothesis, we might
compute an F-ratio as described in the previous section, for the original labeling of speci-
mens. We might then randomize the labeling of specimens that indicate their level on Ai,
leaving labels for other factors intact, and then recompute the F-ratio, doing this repeat-
edly to estimate a distribution of F-ratios. We would then compare the observed F-ratio to
that distribution to estimate a p-value for the observed F-ratio. One advantage of the use
of the distance matrix is that since the data in the distance matrix are distances between
specimens I and J, we can permute the rows and columns in the distance matrix without
having to permute the individuals themselves. As a result, we do not have to recompute
all distances between all specimens for each permutation. Instead, we can simply rear-
range the existing distances within the matrix (see Anderson, 2001a,b, for a complete
discussion of this approach).

An important feature of all permutation methods is that the units being permuted be
exchangeable, which is equivalent to saying that the variables are independent and identi-
cally distributed, although they need not be normally distributed (Anderson and ter
Braak, 2003). The assumption that error variances are equal among groups is also required,
just as it was in the classical analytic approaches to multivariate analogs of the F-ratio.
While the pseudo F-ratios do not explicitly address the variance�covariance matrix of the
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measured variables, the permutation methods do. That is because the individual measure-
ments are not exchangeable, instead, it is the individual organism with all its measure-
ments that is treated as a unit. It is the individual’s landmark configuration that is
exchangeable, not individual landmarks. So the estimated significance of an observed
F-ratio is based on a permutation that preserves the variance�covariance pattern among
the individual elements in Y (i.e. landmark positions). Consequently, the observed variance�
covariance matrix is taken as a given when assessing the significance of the F-ratio.

Types of Permutations

There is a range of possible approaches to the permutation of data to determine the sig-
nificance of a test statistic, such as the F-ratios discussed here. An exact statistical test is
one in which the Type I error rate (alpha) is exactly equal to the a priori chosen alpha value.
The approach to achieving an exact test for a one-way ANOVA (or MANOVA) seems to
be straightforward and well understood (Good, 1994; Manly, 1997; Anderson and ter
Braak, 2003). However, the approach is less straightforward when it is difficult to form
exact tests, such as when there are multiple factors (Anderson and ter Braak, 2003), and is
a subject of debate (ter Braak, 1992; Edginton, 1995; Manly, 1997). The simplest approach
is to permute the raw data, meaning that specimens are randomly reassigned to groupings
based on all factors at once. This approach is fine for a single factor, and can be used to
form an exact permutation test. However, once there is more than one factor, permutation
of residuals becomes an alternative approach.

One approach is to calculate the residuals based on the most complex model under con-
sideration (the full model), and then base the estimates of p-values for all simpler models
(meaning for models of individual factors) on the distributions of F-values obtained under
this permutation of the residuals from the full model. In a two factor model, with factors
A, B and an interaction A3B, the residuals would be computed based on A1B1A3B,
so that the significance of the factor A would be based on the full residuals. In a permuta-
tion based on a reduced model, the factor A would be tested using residuals permuted with
a fixed B value. The permutation is done with all the terms other than the one(s) being
tested held fixed (Anderson and ter Braak, 2003), an approach also discussed by Edginton
(1995). Anderson and ter Braak (2003) recommend using permutations under the reduced
model on the grounds that the power should be greater than or equal to that of the exact
test. Permutations of residuals always yield approximate tests, which should asymptoti-
cally approach the exact test.

MODELS WITH MULTIPLE FACTORS

To exemplify the analysis of models with multiple factors, we consider first the analysis
of alpine chipmunk jaw shape with two fixed factors, sex and region (the Yosemite region
and the southern Sierras). Rather than restricting the analysis to a balanced design, as we
did in the last chapter, we use all the animals collected between 1911 and 1919 from these
two regions. Because there are 117 animals, but 15 landmarks and 85 semilandmarks, we
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clearly cannot invert the variance�covariance matrix. However, we can reduce the
dimensionality of the data using principal components analysis. To ensure that we have
four times as many individuals as variables, we can use the first 30 principal components,
which explain 95.4% of the variance. The results are shown in Table 9.11; both main effects
are statistically significant (although only sex had a significant effect on jaw size, see
Table 9.5). The interaction term is not statistically significant. As an alternative approach,
we can use the distance-matrix permutation method; those results, based on the sequential
(Type I) sums of squares, are shown in Table 9.12. Again, both main factors are statistically
significant and the interaction term is not. Because we are using sequential sums of
squares, we might also wish to look at the results after reordering the terms in the model.
Table 9.13 shows the results, now with region entered first. Again, the two main effects
are statistically significant and the interaction term is not, but the proportion of variation
explained by the terms does change, albeit slightly. We might also wish to examine the
marginal (Type III) sums of squares and, in this case, as shown in Table 9.14, there is one
important difference � the interaction term is statistically significant. That is important
because it means that we cannot generalize about the “main effects”. The effects of each
factor are not general because the impact of each one depends on the level of the other.
This ambiguity is the consequence of the unbalanced design.

The second case that we will consider is the model for fluctuating asymmetry,
a two-factor mixed model. The right and left side of each individual’s jaw is measured
twice; the random factor is individual and the fixed factor is side. The interaction term
(individual3 side) is the estimate of fluctuating asymmetry. This is usually tested by

TABLE 9.11 A Two-Factor Model for Alpine Chipmunk Jaw Shape

Source df Pillai Approx F df1 df2 P

Sex 1 0.39386 1.8194 30 84 0.0173

Region 1 0.80366 11.4607 30 84 ,2e2 16*

Sex3Region 1 0.30464 1.2267 30 84 0.231

Residuals 113

TABLE 9.12 A Two-Factor Model for Alpine Chipmunk Jaw Shape, Fitted to the Matrix of Pairwise
Procrustes Distance, and Tested by Permutations Using Sequential (Type I) Sums of Squares

Source SS df MS F R2 P

Sex 0.002034 1 0.0020338 4.88 0.0369 0.001

Region 0.005370 1 0.0053697 12.88 0.0973 0.001

Sex3Region 0.000679 1 0.0006790 1.635 0.0123 0.068

Residuals 0.047114 113 0.0004169

Total 0.055197 116 1

Sex entered as the first term in the model.
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what Klingenberg calls a “Procrustes Anova” (Klingenberg and McIntyre, 1998;
Klingenberg and Zaklan, 2000). Table 9.15 shows the results and, in this case, it is the
interaction term (which is tested again measurement error) that is of greatest interest.
That interaction term is highly significant. Figure 9.1 shows the first two principal com-
ponents of the symmetric (Figure 9.1A,B) and fluctuating symmetric (Figure 9.1 C,D)
components of alpine chipmunk jaw shape.

MODELS WITH COVARIATES

If we examine a simple model with a single factor A and a single covariate X, it will
have the general form

TABLE 9.13 A Two-Factor Model for Alpine Chipmunk Jaw Shape, Fitted to the Matrix of Pairwise
Procrustes Distance, and Tested by Permutations Using Sequential (Type I) Sums of Squares

Source SS df MS F R2 P

Region 0.0057994 1 0.0057995 13.91 0.106 0.001

Sex 0.001604 1 0.0016040 3.85 0.0291 0.001

Region3 Sex 0.000679 1 0.0006790 1.65 0.0123 0.075

Residuals 0.047114 113 0.0004169

Total 0.055197 116 1

Region entered as the first term in the model.

TABLE 9.14 A Comparison Between the Results Using Sequential (Type I) and Marginal (Type III) Sums of
Squares for the Impact of Sex and Region on Alpine Chipmunk Jaw Shape Fitted to the Matrix of Pairwise
Procrustes Distance, and Tested by Permutations

Sequential

Source SS F R2 P

Sex 0.0020 4.88 0.0369 0.001

Region 0.0054 12.88 0.0973 0.001

Sex3Region 0.0007 1.635 0.0123 0.068

Marginal

Source SS F R2 P

Sex 0.0020 4.40 0.0368 0.0020

Region 0.0058 13.50 0.1051 0.0020

Sex3Region 0.0009 2.01 0.0171 0.0260

For the analysis using sequential sums of squares, sex is entered first.
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Y5A1MðAÞX1 ε (9.49)

where Y is the centered matrix of the dependent data, X is the centered matrix of covariate
values, A is the factor, M(A) is a matrix of coefficients (or slopes), one per variable in Y. The
coefficients in M(A) are assumed to depend on the levels in A, and ε is again the residual or
error term. This would be the “full” model because it contains all the interactions of interest.
We would like to compare it against a model in whichM is independent of A

Y5A1M0X1 ε (9.50)

which is a reduced model relative to the model with M(A). We would probably also con-
sider the model in which there is no dependence of Y on X

Y5A1 ε (9.51)

If the second model, which turns out to be significant, and the first is not, we might
also consider the model with no dependence of Y on A.

Y5M0X1 ε (9.52)

As discussed above in the context of univariate analyses, the typical approach is to com-
pute the regression slopes for each level of A and then to test the null hypothesis that the
slopes do not differ by comparing values of the derived univariate slopes. A multivariate
approach, presented by Rencher and Schaalje (2008), tests the hypothesis that the slopes
are all equal using an F-test, in which they compute the variance explained by the full
model (of independent slopes) beyond that explained by the reduced model (of homoge-
neous slopes) as the sums of squares in the numerator, and use the sums of squares of the
error term of the full model (independent slopes). This produces an F-ratio of the form:

Findependent slopes 5
ðSSindependent slopes 2 SScommon slopesÞ=ðJ2 1Þ
ðSSresiduals=independent slope modelÞ=ðn2 2J Þ (9.53)

noting that the numerator has df5 (J2 1) because the independent slopes model has
J slopes estimated for J levels in A, whereas the common slope model estimates only one
slope. The residuals of the independent slope model have J estimated slopes, and J esti-
mated means, leaving n2 2J degrees of freedom remaining for n specimens. This ratio can

TABLE 9.15 A Two-Factor Mixed Model for Shape Using a Generalized Goodall’s Test: Fluctuating
Asymmetry of Chipmunk Jaw Shape

Source SS df MS F R2 P

Individuals 0.1479 9435 0.0013 6.71 0.83 ,0.0001

Sides 0.00034 111 3.0843E-06 1.45 0.002 ,0.0001

Individual3 Sides 0.02204 9435 1.9847E-04 5.90 0.124 ,0.0001

Measurement error 0.00755 19092 6.8018E-05 0.042

Fluctuating asymmetry is estimated by the “Individual3 Sides” term.
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be tested using permutation methods as discussed earlier and, if the independent slopes
model is significant, no further testing of the significance of the factor is warranted.

If the test for independent slopes is not significant, then the next step would be to test
the common slope model against the reduced model with no covariate,

Fcommon slopes 5
ðSScommon slopes 2 SSzero slopesÞ=ð1Þ

ðSSresiduals=independent slope modelÞ=ðn2 J2 1Þ (9.54)

If the common slope model is significant, then the variance due to the common slope is
removed and the analysis of A proceeds as in the single-factor case discussed earlier. If neither
the common nor independent slope models are significant, then one also proceeds to test A.

MODELS WITH MULTIPLE FACTORS AND A COVARIATE

In a situation where there are multiple factors A and B, as well as the covariate X, the
full model would be

Y5A1B1A � B1MðA3BÞX1 ε (9.55)

with slopes dependent on the interactions of A and B. One might test this against both
possible reduced models (as implied by the discussion in Rencher and Schaalje, 2008)

Y5A1B1A3B1MðAÞX1 ε (9.56)

Y5A1B1A3B1MðBÞX1 ε (9.57)

FIGURE 9.1 Principal components of symmetric and fluctuating asymmetric variation of alpine chipmunk mandi-
ble shape. (A) PC1 of the symmetric component of variation; (B) PC2 of the symmetric component of variation; (C) PC1
of the fluctuating asymmetric component of variation; (D) PC2 of the fluctuating asymmetric component of variation.
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which have slopes dependent on A or B, but not both. These models might then, in turn,
be compared to the common slope model:

Y5A1B1A3B1MX1 ε (9.58)

using basically the same approach to forming F-tests.
To exemplify a model with multiple factors and a covariate, we add a covariate, size, to our

model for alpine chipmunk jaw shape. As shown in Table 9.16, all three factors have a signifi-
cant impact on jaw shape. These results are based on the Type 1 (sequential) sums of squares,
with size entered first, then shape, and then region because we are primarily interested in the
impact of region. The results can be read as saying that size has a significant impact on shape,
that sex has a significant impact controlling for size, and that region has a significant impact
controlling for size and sex. An interesting pattern can be seen in Figure 9.2: all three factors
have a substantial effect on the angular process, differing in where and how they affect it.

ANALYZING MEASUREMENT ERROR

Measurement error contributes to the unexplained variation in the data and, by increas-
ing the noise, measurement error makes it more difficult to pick out the influence of the
factors of interest, especially when their effects are subtle. Measurement errors are gener-
ally thought of as being either systematic or random (see Arnqvist and Martensson, 1998).
Systematic errors are consistent biases in a measurement meaning that all measures are
incorrect to a consistent degree or extent. One of us (HDS) was thrilled to find a set of
inexpensive plastic rulers which were roughly 3 to 5% shorter than claimed by the mark-
ings on them, perhaps because of shrinkage of the plastic, or poor mold-making. All mea-
surements made with these rulers were uniformly short by a fixed factor, one specific to a
particular ruler, which made them invaluable in an introductory physics lab on

TABLE 9.16 A Three-Factor Multivariate Analysis of Covariance: The Impact of Size, Sex and Region on
Alpine Chipmunk Jaw Shape (Using Sequential Sums of Squares)

Source SS df MS F R2 P

Size 0.001497 1 0.001497 3.6151 0.02712 0.001

Sex 0.001587 1 0.0015865 3.8312 0.02874 0.001

Region 0.005194 1 0.0051943 12.5434 0.09411 0.001

Size3 Sex 0.000362 1 0.0003625 0.8753 0.00657 0.549

Size3Region 0.000597 1 0.0005972 1.4423 0.01082 0.128

Sex3Region 0.000655 1 0.000655 1.5816 0.01187 0.081

Size3 Sex3Region 0.000167 1 0.0001666 0.4023 0.00302 0.990

Residuals 0.045138 109 0.0004141 0.81776

Total 0.055197 116 1
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measurement error. Systematic errors are most worrisome when they interact with a bio-
logical factor, such as parallax, which is most pronounced at the edge of the camera’s field
of view. It may therefore have a greater influence on larger specimens than on smaller
ones if the field of view is held fixed. In contrast to systematic errors, random errors do
not occur in a regular manner, but they are typically modeled by a statistical distribution,
most commonly by a normal distribution. To reduce the impact of measurement error we
can first decompose the error into its sources by a repeated-measures nested MANOVA,
taking multiple measurements of the same specimens and treating each potential source of
error as a factor. For example, we might have a choice between two imaging methods, e.g.
CT scans and photography. We would then image each specimen several times using both
methods, and digitize each image several times. We would then have the factors: (1) indi-
vidual (the biological variation among members of the population); (2) imaging technol-
ogy; and (3) measurement. All are random and “Imaging technology” is nested within
“Individuals” and “Measurement” is nested within “Imaging technology”. By decompos-
ing the variance into these sources we can determine whether the technologies produce

FIGURE 9.2 The effects of size, sex, and region on
alpine chipmunk mandible shape: (A) size; (B) sex;
(C) region.
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different results, and whether one is more prone to measurement error than another, and
whether the difference is large enough to matter given the magnitude of the biological var-
iation. This approach is especially valuable when you can choose your imaging and mea-
surement methods. Even when you cannot, it is still useful to do repeated measures of the
same specimens so that you can quantify measurement error.

Measurement error is often quantified as repeatability (R) using a ratio of two variance
components, that for the among-individual to the sum of the among-individual and
measurement error components. These components can be calculated from the MANOVA
table by equating the mean squares (MS) to the expected mean squares (EMS). The
EMS for the Individual term is σ2ME1 kσ2IInd, where k is the number of replicate measure-
ments. To calculate the repeatability of alpine chipmunk jaw shape data, we would
use Table 9.17, which gives the MS and EMS for the right sides of the jaw, each mea-
sured twice. In this case, k5 2. So, to compute the value for Individual variance compo-
nent, we subtract the measurement error MS from the Individual MS and divide by
the number of replicates: (0.0009122 0.0000385)/25 0.0004365. We then compute the
ratio between that component and the total, with the total being σ2ME1 σ2Ind
(0.00003851 0.00043655 0.00047525). We would then take the ratio between σ2Ind and
σ2ME1 σ2Ind: 0.0004365/0.000475255 0.919. So the repeatability of shape is 0.92. We can
reduce measurement error by averaging the repeated measures of the same specimens.

IMPLEMENTING GLM

Several software packages can be used to analyze GLM for shape. For permutation
MANOVAs or permutation tests of general linear models, one usually needs to specify for
each hypothesis:

How sums of squares and cross products should be calculated (i.e. Type I, II, III)
What the numerator and denominator of the F-tests should be
What factors (or labels) are exchangeable under the null hypothesis.

Some programs, such as adonis in the vegan package (Oksanen et al., 2011) in R
(R_Development_Core _Team, 2011), are highly automated so all that you do is to specify
the model. Others, such as DISTLM (Anderson, 2004) require you to input the design
matrices for the factor(s) of interest, as well as the design matrices for other terms

TABLE 9.17 Mutlivariate Analysis of Variance of the Alpine Chipmunk Jaw Shape Measured Twice on the
Right Side of the Jaw

Source SS df MS EMS

Ind 0.084781 93 0.00091162 σ2ME1 2σ2Ind

ME 0.003619 94 0.00003850 σ2ME

Total 0.088400 187

The expected mean squares (EMS) are equated to the MS and used to compute the Individual (Ind) and measurement error (ME)

variance components.

2. ANALYZING SHAPE VARIABLES

258 9. GENERAL LINEAR MODELS



(including covariates) in the model, and for the denominator term, as well as to designate
the exchangeable units. Not surprisingly, the highly automated programs are often either
limited in the types of experimental designs that they can handle, or in the flexibility that
they offer. For example, adonis (as currently implemented) cannot analyze a mixed model.
More flexible programs, such as DISTLM, can analyze any model (using sequential sums
of squares) but require far more work from the user. More details on the implementation
of GLM using multivariate test criteria (applied either to the coordinates or principal com-
ponents), as well as on the Procrustes Anova and the use of permutation-based tests of
distance matrices are discussed in the workbook.
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C H A P T E R

10

Ecological and Evolutionary
Morphology

In this chapter we discuss methods and approaches for studying evolutionary trans-
formations of shape. This topic covers a wide variety of studies, so we focus on a few
commonly investigated areas of interest: correlations between size and shape (evolutionary
allometry), correlations between form and function (functional morphology, ecomorpho-
logy), comparisons of evolutionary trends (studies of parallelism and convergence), and
quantitative descriptions of the morphospace occupation (evolution of morphological
diversity). For each area, we examine the typical research questions and the principal
methods of answering those questions.

Many of the studies of shape evolution have focused on identifying the factors that deter-
mine its direction. One question might be: Is there a correlation between size and shape?
Another might ask: Do species that differ in diet also differ in shape and is that difference
related to the strength or the speed of their bite? Having found such a relationship, the next
step might be to ask if other lineages exhibit a similar trend, or what conditions would cause
a change in the direction of that trend. Answers to these questions might lead to new
questions about the generation of morphological diversity: for example, are some habits or
habitats more conducive than others to increasing morphological diversity?

The vast majority of studies on evolution of shape involve comparing morphologies
of multiple species, sometimes several dozen species. Many of these interspecific comparisons
can be performed using the same analytic methods as would be applied to intraspecific compar-
isons of individuals (e.g. regressing size on shape or performing ANOVA to test for differences
of means among diet classes). However, to perform these analyses correctly for interspecific
comparisons, it is necessary to include the phylogenetic relationships of the taxa. Therefore, we
begin this chapter with a discussion of the role of phylogeny in comparative studies.

INCORPORATING PHYLOGENY IN COMPARATIVE STUDIES

The problem phylogenetic relationships present for statistical inference have been
discussed at length in numerous publications (Cheverud et al., 1985; Felsenstein, 1985;
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Martins and Garland, 1991; Garland et al., 2005; Martins and Hansen, 1997; Rohlf, 2001,
2006). To understand the core of this problem, it is important to keep in mind that to
perform any sort of statistical analysis, we need a model of a random distribution so we
can determine whether our data deviate meaningfully from that model distribution. We
need that model if we want to determine whether the mean of one trait differs between
samples or if we want to determine whether traits are correlated in their distribution
among samples. We must also be able to assume that our samples are randomly drawn
from the population they represent; only then can we determine whether our samples are
more or less similar than expected. The Brownian motion model of evolutionary change
can be used to generate an expected distribution of values for a randomly evolving trait
(as can other evolutionary models). The problem is that taxa representing an evolving
lineage usually cannot be treated as equally independent samples of that distribution.

For a single, unbranching lineage, the Brownian motion model predicts that most changes
will be small and no one direction of change is more likely than any other; and although a
large change (either a single step or a run) is unlikely, longer branches provide more opportu-
nities for one to occur. If one had a set of taxa with the same trait value at a given starting
time, the mean of the set at any later time is expected to be the starting value, but the variance
of that trait is expected to increase as a function of the elapsed time. More important, there is
no expectation that one pair of taxa will be more similar than another pair of taxa. This
unlikely scenario, often represented by a star phylogeny (Figure 10.1A), differs greatly from
the usual situation in which taxa vary in degree of relatedness, that is, the amount of time
that has passed since splitting from their most recent common ancestor (Figure 10.1B).

In a branching lineage, the Brownian motion model predicts that similarity will be a
function of relatedness. If the lineage branched early in the clade’s history (group X, see
Figure 10.1B), it is likely the common ancestor (the branch point) had a small but non-zero
deviation from the root, but its descendants are more likely to have deviations that are
larger and in different directions. A lineage that branched more recently (group Y, see
Figure 10.1B) is much more likely to have a common ancestor that diverged far from the
root and descendants that differ little from their relatively younger common ancestor.
Therein lies the crux of the statistical problem � similarity is predicted by common ances-
try, so taxa cannot be treated as independent samples.

The non-independence of taxa is a problem for analyzing correlations as well as for
analyzing differences between means. The structure of phylogenetic relationships predicts
the same pattern of similarity for all traits. If two taxa are closely related, they will be
similar in jaw length, and tooth shape, and every other trait. In Figure 10.2, one set of taxa
is clustered around one pair of ancestral values; another set of taxa is clustered around a

FIGURE 10.1 Two hypothetical phy-
logenies that differ in variation of relat-
edness of tip taxa. (A) A star phylogeny
with four lineages diverging simulta-
neously from a single common ancestor.
(B) The root gives rise to two lineages
that branch at different times.
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different pair of ancestral values. An analysis that fails to account for the phylogenetic
relationships of this group is apt to infer a regression that really only characterizes the
difference between one pair of ancestors: their respective most recent common ancestors.
That ancestral divergence may not be representative of subsequent evolution in either
group, which also may not be similar to each other. In more formal terms, degrees of free-
dom will be overestimated, confidence intervals and p-values underestimated, all leading
to an elevated probability of incorrectly rejecting a true null hypothesis (type I error).

The most commonly used method of incorporating phylogenetic information in a
comparative analysis is computation of Felsenstein’s (1985) phylogenetically independent
contrasts. A module for this technique is included in MorphoJ. Contrasts are net evolution-
ary differences between sister taxa (Figure 10.3). For two tip taxa, the contrast is simply
the difference between the observed values (usually the means of the sampled indivi-
duals). For internal nodes, the contrast is the difference between the inferred values of the
respective most recent common ancestors (MRCAs) of the descendants, which is the net
change in each branch since the earlier MRCA. Under Brownian motion, evolution on one
branch is independent of evolution on its sister branch, and divergence of daughters is
independent of the evolution that produced their MRCA; consequently, contrasts com-
puted in a non-recursive, top-down manner will be independent. Brownian motion also
predicts a mean of zero and variance proportional to divergence time (branch length), so
standardized contrasts (mean 0, variance 1) can be produced by dividing the contrasts by
their branch lengths. Squared change parsimony optimization, weighted by independent
estimates of branch lengths, produces node values that are consistent with this model and
therefore can be used in the computation of contrasts (Maddison, 1991).

Standardized contrasts can be used in any conventional multivariate analysis, including
PCA, regression and ANOVA. Note that the number of contrasts is one less than the num-
ber of taxa, so the total number of degrees of freedom in statistical tests is decremented by
1. Figure 10.4 compares regressions of jaw shape on size in North American tree squirrels
using species means and contrast scores (Swiderski and Zelditch, 2010). The analysis of
species means found a highly significant correlation (p5 0.000011) that accounted for 78%
of the shape variation. Using contrasts, the regression accounts for only slightly less varia-
tion (74%) and the p-value was higher (0.000092) but still very significant. Also, the pattern

FIGURE 10.2 Influence of phylogeny on inference of a correlation. (A) Phylogeny with trait values for tip
taxa. (B) Scatter-plot of trait values showing clustering by descendant lineage.
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of shape change inferred from contrasts was not visibly different from that inferred from
the species means.

You may have noticed that the regression line for contrasts passes through the origin
(the y-intercept is zero). This is because contrasts are computed from the differences
between taxa; so if there is no change in one trait, there should be no change in the other,
whatever the slope happens to be (β3 05 0). For the same reason, all values of the inde-
pendent variable, size, are positive. There is no reason to choose between subtracting
taxon A from taxon B or the reverse. What is important is computing the contrast in the
same direction for both traits (e.g. A2B for independent and dependent variables) to
preserve the positive or negative slope of the relationship between traits.

Unlike many previous studies, our contrast analysis found a somewhat steeper slope
than the analysis based on trait values (0.0124 vs 0.0094), but as Rohlf (2006) points out
there is no a priori reason to expect a difference in one direction rather than the other.
Regression on untransformed species means and regression on contrasts are both unbi-
ased estimators of the sample slope and correlation. This does not mean the two produce
exactly the same result, only that underestimating and overestimating the true value
are equally likely. The purpose of using contrasts is to judge correctly whether the
slope can be considered different from zero or some other reference value, which is
achieved by correcting the numbers of degrees of freedom and accounting for the
expected covariance resulting from differences in relatedness. This may be clearer for the
next method.

The most commonly used alternative to phylogenetic independent contrasts (PIC) is
phylogenetic generalized least squares (PGLS; Martins and Hansen, 1997; see also
Rohlf, 2001). PGLS also uses the expectation that change is proportionate to time under
Brownian motion drift to weight observations, but the difference is that the transformation
is applied directly to the data in PGLS, not to contrasts computed from the data as in PIC.
Recall the regression formula, y5 bX1 ε, in which ε is the error term. In ordinary least
squares regression, the elements of ε are expected to be independent and normally distrib-
uted with a mean of zero but, in comparative data, ε is expected to exhibit variances and
covariances that are predicted by the phylogenetic variance�covariance matrix � that is,
the heights of tips and internal nodes above the root. Factoring that covariance matrix
out of the equation, thus incorporating it in the computation of b, yields a corrected
error matrix, more accurate estimates of p, and better type I error rates.

FIGURE 10.3 Independent contrasts. Contrasts are differences
between sister taxa, as indicated by the gray arrow. For tips that
share a common ancestor (a), they are the difference between sam-
ple means. For unpaired tips (b), they are the difference between
that tip and the MRCA of its sister clade. For internal nodes (c),
they are the difference between the respective MRCAs.
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For both PGLS and PIC, errors in phylogenetic inference (both branching pattern and
branch lengths) have the potential to produce misleading results. These phylogenetic
errors increase the standard errors of the estimated statistical parameters, but the estimates
are still unbiased (Rohlf, 2006). Numerous studies have demonstrated that these methods
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FIGURE 10.4 Comparison of regression on means to regression on contrasts. (A) Mean shape regressed on
mean centroid size for jaws of 23 sciurine squirrel species. Triangles: Tamiasciurus: squares: Old World Sciurus;
diamonds: North American Sciurus; circles: South American Sciurus; gray circles: South American dwarf species.
(B) Regression on contrasts for the same species. Black symbols are within group contrasts for same taxa as in A;
white symbols are contrasts between that group and its sister group; gray circles are contrasts between the dwarf
species and their respective South America sister groups.
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are robust to branch length errors (Martins and Garland, 1991; Diaz-Uriarte and Garland,
1998; Rohlf, 2006). Stone (2011) shows that changes in branch length and even small
changes in topology usually have little effect on the phylogenetic covariance matrix and,
thus, have little effect on results. Small topological changes only have large effects when
they change the position of a particularly influential data point (analogous to the effect
of an influential point on a regression). Large errors in topology will have more substantial
effects (Martins and Garland, 1991; Symonds, 2002), but Martins and Garland argue that
topological errors so large as to be misleading are unlikely for any reasonably well-studied
taxon.

PGLS regression includes an estimate of the y-intercept. This is the same value as would
be obtained by forcing PIC regression through the PGLS mean. The mean computed from
PGLS is equal to the estimated value of the root under the squared change parsimony
optimization. In fact, PGLS can be used to infer trait values at all nodes, and these
estimates also are the same as the reconstructions using squared change parsimony
optimization.

It is now well established that PIC and PGLS produce the same statistical results
when the Brownian motion model is used to predict the expected covariances. The advan-
tages of PGLS are that it is a more generalized method and more readily adapted to
other evolutionary models (by making the appropriate modifications of the phylogenetic
variance�covariance matrix; Rohlf, 2001). Another advantage, demonstrated by Revell
(2009), is that it is possible to generate standardized values for taxa in the original
measurement space, which then can be used for visualization or for analyses in other
applications, (e.g. an ANOVA on size-standardized data). As Revell points out, it would
still be advisable to use phylogenetic methods for the subsequent analysis.

A third approach to the problem of phylogenetic non-independence is to simulate
evolution of the trait(s) on the tree using an appropriate evolutionary model, build a null
distribution, and evaluate the position of the observed data relative to the population of
simulations (Martins and Garland, 1991; Garland et al., 1993). One potential advantage of
this approach is that it has the capacity to simulate evolution under various models,
including ones for which the expected error structure is not easily derived. The interested
reader is referred to Garland et al. (2005) and references therein for further guidance.
For possible extensions of this approach, for example to test competing hypotheses about
evolutionary processes, the reader is directed to on-going projects by Harmon and
colleagues (e.g. Eastman et al., 2011).

A Note on Phylogenetic “Signal” or “Constraint”

Several writers have characterized the methods discussed here as correcting for phy-
logenetic signal, and some have taken the further step of inferring that this signal is
evidence of constraints on the evolutionary process. It should be clear by this point that
the signal to which they are referring is nothing more than congruence with phylogeny.
Rohlf (2006) makes the point that the phylogenetic comparative methods do not correct
the parameter estimate. They do not remove the proportion of the variance that is due to
common ancestry, so they should not be regarded as analogous to size standardization by
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computing residuals from a regression. What the phylogenetic comparative methods
correct is the type I error rate � the probability of incorrectly favoring the alternative
hypothesis over a true null hypothesis. That correction insures that when we claim the
traits we hypothesize to be integrated or otherwise constrained have evolved in concert,
they actually exhibit greater covariation than expected by chance. Further assurance can
be obtained by computing the K statistic proposed by Blomberg et al. (2003), or the per-
mutation test presented by Klingenberg and Gidaszewski (2010), to test explicitly that the
trait distribution is more congruent with the phylogeny than would be expected of a
randomly evolving trait. The phylogenetic comparative methods may not be able to correct
our inferences regarding the slope of that relationship, but they do provide firmer grounds
for claiming that such relationships exist. In this very specific sense, they can and do give
us a better basis for testing hypotheses of historical or phylogenetic constraint, but only if
we keep in mind that there is much more to those hypotheses than the similarity of sister
taxa. Congruence with phylogeny that is consistent with a model of random evolution is
no more evidence of constraint than it is evidence of adaptation.

EVOLUTIONARY ALLOMETRY

Gould (1966) characterized allometry as “the study of size and its consequences”. This
description may seem rather extravagant, but does capture the importance of size for
many aspects of biology. Many studies of allometry have investigated the influence of size
on ecological role or functional performance, sometimes finding complex relationships
that produce unexpected results. For example, a bigger snake may be able to eat absolutely
bigger fish, but changes in jaw proportions that allow snakes to catch bigger and faster
fish may also force them to choose relatively smaller ones. Conversely, a different jaw
allometry that allows snakes to eat relatively larger prey might alter their strike mechanics
and force them to switch to prey that are also relatively slower. Because geometric
morphometrics is able to partition morphology into independent size and shape com-
ponents, it is able to provide more direct answers to questions about relationships of
size and shape than could be extracted from older methods.

Questions about the evolutionary role of morphological allometry concern many
more topics than its influence on mechanical functions or ecological interactions. One of
these questions is what proportion of shape variation is correlated with size? This may
seem very specific and narrow, but the answer may determine the ability of the allometry
to constrain evolutionary change. The long-term stability of allometric patterns may also
be a factor in their role as constraints. A closely related question is whether allometric
patterns provide an evolutionary line of least resistance, a notion predicated on their
potential to predict or constrain responses to selection (Schluter, 1996; Marroig and
Cheverud, 2005). The converse question is whether selection can change allometric pat-
terns to direct evolution along a new axis. Dynamic evolution of allometric patterns
could play an important role in the rapid morphological diversification of an adaptive
radiation.

Gould’s expansive representation of the importance of allometry should also serve as a
reminder that not all allometric studies are concerned with the relationship of size and
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shape, not even all studies of morphological allometry. A study of the piscivorous snakes
mentioned above could quite reasonably be focused more on the relative lengths of the
various parts of the jaws than it would be on the shapes of those parts. Those ratios may
be critical for determining function parameters like bite force or jaw closing speed, or
the dimensions of the prey that can be accommodated (Vincent et al., 2009). However, an
analysis of shape might still be useful for finding correlates of the changes in relative
lengths. In the absence of an a priori mechanical model, or lacking a basis to choose
between alternative models, analyzing the changes in shape associated with changes in
size could be useful as an exploratory analysis.

Figure 10.5 shows positions of several lever arms on the squirrel jaw and regressions
of their lengths on jaw centroid size. Most lines have similar slopes and deviations of
individual contrasts from the line tend to be small. Large deviations are only found at the
low end of the scale, where contrasts are small and the influence of measurement error is
apt to be relatively large. None of these lines differs significantly from isometry (slope5 1),
and we can expect their ratios to show similar stability. This differs sharply from the ear-
lier result for shape (see Figure 10.4), which showed significant allometry (slope . 0.0).
The pattern of shape change associated with a positive size contrast (size increase) may
suggest an explanation for this incongruity. The deformation grids illustrating that shape
change (Figure 10.5C) suggest that the angular relationships of the lever arms are changing
even as the ratios of their lengths remain the same. The deformation also suggests the
shape change may be more substantial in areas that are not well covered by the length
measurements. Thus, shape analysis may suggest changes in performance or behavior that
were not evident from an analysis of length measurements.

In our analysis of squirrel jaw allometry, we used centroid size of the jaw as our size
measure. Centroid sizes were computed in the course of quantifying shape differences, so
they were readily available. Jaw size was also deemed relevant to our study because jaw
size is intimately associated with jaw function. Preliminary analyses also showed a strong
correlation between jaw size and summer body weights of healthy animals, suggesting
jaw size is a reasonable proxy for whole organism size. Had another measure of size been
judged to be more relevant (e.g. linearized body mass or molar surface area), shape could
have been regressed on it just as easily.

FORM AND FUNCTION

One of the recurrent themes in evolutionary morphology is the attempt to understand
the relationship between differences in form and differences in function. These studies
might focus on the relationship of morphology to the environments in which the organ-
isms are found or their ecological roles in those environments (e.g. relating foot shape
to substrate or jaw shape to diet). Other studies might focus more on the relationship of
morphology to some measure of the organism’s ability to perform an important function
(sprint speed or bite force). For either type of study, the underlying question might be
about the role of selection in producing the observed or hypothesized association between
form and function.

Descriptive studies like those mentioned above are often a preliminary step in a study
that is primarily aimed at investigating factors that might limit the ability of selection to
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produce evolutionary change. Numerous potential constraints on adaptive evolution have
been proposed, from the limited mechanical properties of materials used to build organ-
isms, to correlations of parts that are not congruent with the pattern of correlated changes
favored by selection (Seilacher, 1979; Gould, 1984; Maynard Smith et al., 1985). Such

FIGURE 10.5 Allometry of
lever arm lengths and shape.
(A) Sciurus jaw with selected
lever arm lengths shown as
dashed lines. 1: anterior molar
output arm; 2: anterior tempora-
lis input arm; 3: anterior deep
masseter input arm; 4: superfi-
cial masseter input arm. (B)
Scatter-plots of contrasts for the
four lever arms for 23 sciurine
species. (C) Deformed grid
showing shape change corre-
lated with size increase inferred
from contrasts (Figure 10.4).
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constraints may prove to be short-lived, since theoretical models predict that phenotypic
and genetic (co)variance structures evolve to match patterns of developmental and func-
tional integration (e.g. Lande, 1980; Cheverud, 1982, 1984; Wagner, 1988; Wagner and
Altenberg, 1996). This matching is expected to result from differential elimination of pleio-
tropic effects between components of different functional complexes, combined with the
maintenance (or augmentation) of pleiotropic effects within a complex.

Whatever the ultimate goal might be, studies of form�function relationships share a
common analytic task: testing whether differences in one set of variables are associated
with differences in another set of variables measured on the same individuals or taxa. As
we showed in previous chapters, tests of this type can be performed for shape variables
using the same techniques as have been used for other morphometric variables.
Suppose we want to know if there is a difference in jaw shape between tree squirrels in
arid environments and those in more humid environments. We might expect a difference
between the squirrels because different species of trees are found in those environments,
with nuts and leaves and other edible bits that have different properties. We could collect
squirrels from the different environments, digitize their jaws and perform an ANOVA to
test the hypothesis that the shape of their jaws differs between environments. The
test could be quite simple, with only two groups from habitats classified as humid and
arid. A more complex, and perhaps, more realistic analysis might have many groups
from many different habitats. If we have a priori grounds for expecting that humidity is
the single controlling factor we could regress jaw shape on some measure of humidity
evaluated in all the habitats from which we collected squirrels. If we regard the environ-
mental influences as multidimensional, perhaps expecting that temperature, precipitation,
elevation and other characteristics all have effects and may not be entirely independent,
we might use MANOVA, or General Linear Modeling to identify the influential factors
and their effects. And, as we discussed above, performing these analyses on interspecific
comparisons requires that we include phylogenetic information to avoid inflated type I
error rates.

For complex questions, or complex covariates of shape, it may be useful to apply tech-
niques that look for patterns in both data sets simultaneously. One such approach is
Partial Least Squares, which we discussed in more detail in Chapter 7. This method
finds the axes of covariation within each data set that maximally covary between sets.
Because PLS focuses attention on one dimension of variation in each data set, it is
often useful to combine this analysis with a technique that provides a broad perspective,
like matrix correlation (e.g. Monteiro and Nogueira, 2009; Zelditch et al., 2009). Matrix
correlation compares distances computed from one data set to those computed from the
other. For evolutionary morphology studies, one data set could be shape data, the other
might be ecological traits, geographic distances, time or climate. Matrix correlation can
be a powerful tool in the right context, but it should only be used if there is a valid dis-
tance metric for both data sets (Harmon and Glor, 2010). For shape data, the distance
metric is the Procrustes distance, so this method can be used to compare distances in
two sets of shape data (shapes of two parts, or shapes of the same part in juveniles
and adults). Other data sets that might be sensibly compared to shape distances
include physical geographic distances between localities and genetic distances between
populations.
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Returning to our squirrel jaw example, we may wish to consider other factors besides
climate, which may seem to be only indirectly associated with jaw shape. We might
instead prefer to characterize the differences in what is eaten (hard vs soft, tough vs brittle,
thin shell vs thick). Given that most animals have varied diets, we might choose to classify
diets according to preferred foods or the preponderance of foods eaten, or the ones that
are critical to winter survival. Care must be taken in the construction of these variables to
ensure that the variables and the scores on those variables are independent. For example,
scoring diet components as percentages of the total (e.g. 10% vertebrates, 50% arthropods,
40% vegetation) could produce errors of inference from miscounting the number of inde-
pendent variables (and thus, degrees of freedom) as well as incurring the other problems
that arise from the use of ratios (Atchley et al., 1976).

Correlation of jaw shape with material properties of food may still be too indirect
an explanation for variation in shape. We may still question why squirrels that eat a high
proportion of hard foods have differently shaped jaws from those that eat a low pro-
portion of hard foods. To answer this question, it may be necessary to measure jaw
performance directly (e.g., the relationship between forces exerted by muscles and those
applied to the food, or the deformations experienced by the bone when muscles contract).
Correlations of these performance measures with shape may still not answer our ecomor-
phological question because shape may not directly translate into a relevant functional
parameter like mechanical advantage � a ratio of two lever arm lengths. Indeed, if the
answer to the question lies in an analysis of variables that are not shape and is sufficiently
addressed by them, then a geometric analysis of shape differences may be uninformative
or even misleading. On the other hand, if those non-shape parameters are only part of the
answer, then a shape analysis may capture both the changes in those parameters and the
broader morphological context that frames the transformation.

Use of shape analysis to answer a functional morphology question can be illustrated
by examples from our study of squirrel jaws. There are several ways to change a jaw so
the animal can produce a larger bite force and eat harder foods than the competition
can. Many of the alternatives involve moving muscles or their lines of action farther
from the joint, increasing the mechanical advantage of the jaw by reducing the length of
the output arm relative to the input arm reducing its length, thereby increasing output
force relative to input. Another possibility is to shorten the distal part of the jaw, bring-
ing the teeth closer to the muscles (shortening the output arm). Even if these changes
have the same effect on bite force, they may differ in net adaptive value because some
of these changes might reduce gape more than others, which would be detrimental if
the harder items in the diet are also the larger items. Yet another way to increase
output force for eating harder foods would be to increase the thickness of the jaw and
change the curvature of the incisor, allowing it to bear larger loads. This may be less effi-
cient with respect to input�output ratio, but more productive in evolutionary terms
because it allows feeding on harder foods within imposing a smaller gape that might
limit choices.

For rigid structures like individual bones or fixed composites like most mammalian
skulls, it is easy to conceive of the structure having a shape and to frame a question in
terms of changing that shape in response to ecological or functional demands. In contrast,
flexible or articulated structures (e.g. limbs) may not be seen to have “a” shape, but rather
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to exhibit different shapes under different conditions. (The elements each have a shape,
and one could analyze their correlations, but it is not clear what the shape of the compos-
ite should be.) For such structures, it may seem more reasonable to compare proportions
of articulated elements, and the question of shape analysis may not ever arise. However,
such structures can also be fixed or photographed in standardized positions (Adams and
Nistri, 2010). If the position is functionally relevant (jaws at maximum gape, for example),
variation in the shape of the structure in that position might explain variation in perfor-
mance of a particular function (suction velocity or prey capture success rate).

COMPARING TRAJECTORIES

Up to this point in this chapter, we have been focused on methods of testing for a single
evolutionary pattern in the taxon of interest. In this section, we turn to comparing patterns
in different lineages or in different parts of a lineage. We may be interested in such a com-
parison because a previous analysis failed to find a good fit to the entire data set. In the
study of tree squirrel allometry, we found that the shape change associated with size
reduction in two Microsciurus species differed from each other as well as from the general
allometric pattern of the clade. A large Brazilian squirrel (S. spadiceus) also differed from
the general pattern. Foraging behavior of Microsciurus already is known to be unusual
and it is reasonable to suppose that S. spadiceus also has unusual behavior or dietary
preferences. Were the South American clade better represented in our data, we could test
for different allometric patterns.

The tree squirrel results also suggest some of the theoretical questions that often moti-
vate a comparison of trends: for example we might ask if shifts in habitat or diet (which
may represent entry to a new adaptive zone; Simpson, 1953) regularly produce a change
in the direction of morphological evolution. A related question might be whether different
lineages that undergo equivalent habitat shifts (deep water to shallow, dense forest
to open grassland) also undergo equivalent morphological shifts. The shift into a new
adaptive zone may have been facilitated by a key innovation, a morphological novelty that
provided new evolutionary opportunities (Liem, 1973; Lauder, 1981). If we can confirm
that novelty, we may want to test whether it led to multiple descendent lineages following
the same new direction or a radiation of many new evolutionary directions. Many of the
questions about similarity or persistence of trends concern the efficacy or persistence of
constraints. As mentioned in the last section, shared constraints may explain similarity of
evolutionary trajectory and the evolutionary transformation of those constraints may make
it possible for later descendants to evolve in different directions from that taken by earlier
ones.

In the simplest case, we want to know the angle between two vectors. The vectors could
be defined by two ancestors and their respective descendants, or a common ancestor and
two descendants. We can compute the angle between the two vectors, then, by resampling
the samples at the endpoints, determine the uncertainty in the estimates, i.e. the confi-
dence intervals around the vectors (Figure 10.6, Kim et al., 2002). By comparing the widths
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of these confidence intervals to the size of angle between the vectors, we can judge
whether the two directions are significantly different.

In a somewhat more complex case (Figure 10.7A), we might sample our evolving
lineages at several successive points (stratigraphic levels or possibly locations along a
cline). We could still compare the net difference (between end points) or the average
directions (resampling all intermediate levels, as well as the endpoints) but, even in the
latter case, we would be discarding much of the data on changes in direction. Adams and
Collyer (2009) propose treating the trajectory as a shape. The trajectory shapes are
obtained by Procrustes superimposition (centering, rescaling to centroid size5 1, rotating
to minimize the summed squared distances between corresponding points; the only
difference is that the shape trajectories are likely to have higher dimensionality than
anatomical shapes). After superimposition (Figure 10.7B), comparison of populations of
trajectories can be performed by MANOVA but, based on expectations of small sample
sizes, Adams and Collyer suggest that a resampling strategy is more likely to give infor-
mative results.

This approach may be useful for comparing phyletic trends such as responses of herbi-
vores to climate change, or invasion of soft substrate by diverse bivalves. It would be pos-
sible to test whether representatives of different clades responded differently (e.g.
antelope vs deer), however, there are some important limitations to bear in mind. First, as
with Procrustes superimposition of anatomical shapes, the trajectory shapes must have the
same number of points. It is not imperative that the levels have the same range or spacing,
but they are likely to be more informative if they are on similar scales. Comparing
responses to climate change over millions of years in two geological epochs is apt to be
more meaningful than comparing those historical trends to altitudinal or latitudinal gradi-
ents. Second, the method is not designed to compare branching or reticulate patterns. At
first glance this may not seem like a big problem; however, differences in branching time
relative to directional changes would pose serious challenges to the comparability of the
trajectories.

FIGURE 10.6 Vector comparison by resampling. (A) Two pairs of ancestor and descendant species, with
vectors indicating directions of change. Triangles and squares represent two different lineages; black filled sym-
bols are ancestors, gray are descendants. (B) Vectors translocated to show the angle between them (arc). (C) Same
vectors with simulated resampling sets, so the span of resampling sets can be compared to angle between the
original vectors.
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MAGNITUDE AND STRUCTURE OF MORPHOLOGICAL DIVERSITY

Many of the questions we discussed in the previous sections are questions about the
generation and dispersion of morphological variation. In this section, we focus on methods
for quantifying the magnitude of morphological variation (also called disparity in interspe-
cific analyses).

Disparity and variation are closely allied concepts � both refer to the general idea of
“variety”. Disparity usually signifies the variety of a group of species and is the outcome
of evolutionary processes; variation, on the other hand, refers to the variety of individuals
within a single (homogeneous) population and is the raw material necessary for evolution.
Although there is a large and important theoretical distinction between disparity and vari-
ation, the metric (or formula) for measuring them is the same, and so we cover them both
here. Still, to avoid confounding concepts that have little in common aside from a metric,
we begin by reviewing their biological meanings, then turn to the issue of measurement.

Disparity

Disparity may be an unfamiliar term to many biologists, but it has emerged as a major
theme in the paleobiological literature. The term was introduced to clarify the distinction
between two notions of diversity that were often confounded: (1) phenotypic variety (often
but not always morphological), and (2) taxonomic richness. Due largely to work by Foote
(especially Foote, 1990, 1993a, 1993b), the distinction between them has been clarified � a
major step towards increasing both conceptual clarity and methodological rigor. In the
early literature, the number of taxa was often used as a measure of “disparity” but, as
Foote showed (1993b), and as many other studies have confirmed, the number of taxa
increases even as their morphological variety decreases.

FIGURE 10.7 Comparing complex histories of pheno-
typic change by superimposition. (A) Two lineages exhibit
multiple changes in the direction of phenotypic evolution.
(B) Procrustes superimposition of the trajectories permits
visualization and quantification of differences between the
two trajectories.
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To date, most studies of disparity have focused on its temporal dynamics over a geo-
logical time scale. The chief questions addressed by such studies are:

1. What is the temporal pattern of disparity?
2. What evolutionary processes explain those patterns?

Such studies are almost invariably based on fossils because they require sampling
disparity at multiple times in the geological record. Some groups studied in this way
include Cambrian marine arthropods (Foote and Gould, 1992; Wills et al., 1994), Paleozoic
blastozoans (e.g. Foote, 1992), stenolaemate bryozoans (Anstey and Pachut, 1995), crinoids
(e.g. Foote, 1994; Ciampaglio, 2002), gastropods (Wagner, 1995) and Ordovician trilobites
(Miller and Foote, 1996). The growing empirical literature on disparity repeatedly docu-
ments a surprising historical pattern: disparity initially increases and then stabilizes or
even decreases while the number of taxa increases.

Efforts to explain this pattern have focused on two classes of hypotheses: ecological and
developmental. Ecological hypotheses postulate that ecological space is initially open and
then becomes saturated; limits on disparity are thought to arise from the structure of the
ecological space. In contrast, developmental hypotheses propose an intrinsic explanation
for limits on disparity � the acquisition of developmental constraints that stabilize
morphology (see Wagner, 1995 and Ciampaglio, 2002 for reviews of hypotheses and
approaches to testing them). Whether any explanation is even needed has been questioned
in a profound (if difficult) theoretical analysis (Gavrilets, 1999). At present, it is not clear
what we ought to expect from disparity under plausible models; nor is it clear what role
artifacts might play in the patterns detected by empirical analyses. It is also difficult to
isolate causal factors that might explain the temporal dynamics of disparity because of the
multiplicity of uncontrollable factors that can influence those dynamics, including rates of
speciation and extinction, selectivity of extinction or speciation that is non-random with
respect to morphology, the magnitude of change within a lineage, and factors potentially
limiting that magnitude (such as developmental and selective constraints).

Of the various factors that can influence disparity, constraints may be the least under-
stood � partly because they are rarely documented prior to analyzing disparity. Instead,
constraints are inferred from the data, even though it is not clear how either developmen-
tal or selective constraints ought to influence disparity. Both sorts of constraints are
thought to limit disparity, which may seem intuitively obvious; however, like many intui-
tions, it may be faulty. We know little about the impact of either sort of constraint on
disparity, and determining their impacts will require studies that document constraints
independently of such supposed effects. We cannot simply infer constraints from
decreases in disparity when we do not know if they generally decrease disparity. Instead,
we need to determine whether development is constrained or not, and then ask how those
constraints affect disparity. In at least one case, developmental constraints are inferred to
increase disparity (Zelditch et al., 2003).

Studies of disparity of living taxa are still relatively rare, but they have been used to
address basic issues in evolutionary biology � such as whether decoupling of integrated
parts increases disparity (Schaefer and Lauder, 1996), whether biomechanical and morpho-
logical disparity are related to each other (Hulsey and Wainwright, 2002), and whether
developmental constraints might limit disparity (Zelditch et al., 2003). Studies relating
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ecological heterogeneity and morphological disparity have become more common (e.g.
Ricklefs and Cox, 1977; Ricklefs and Travis, 1980; Viguier, 2002; Collar et al., 2010; Carlson
and Wainwright, 2010), but much more work is needed.

Any biological explanation for an empirically documented pattern rests on the assump-
tion that the pattern is real. Whether it is real or an artifact depends partly on how dispar-
ity is measured, and also on the sampling design. Both metrics and sampling designs have
been foci of critical reviews. In particular, a number of critics have taken issue with the
phenetic approach to disparity implicit in the use of a variance as its metric (e.g. Wills
et al., 1994). Alternative metrics, which measure change along branches of a phylogeny,
have been recommended, but they are difficult to apply when ancestors have not been
sampled (or are unknown). They also pose an interpretative challenge because they rede-
fine disparity, replacing the idea of variation around an average with that of directed
change away from the ancestor (see Wills et al., 1994; Wagner, 1997; Smith and Lieberman,
1999). A second criticism is that measures of disparity typically do not consider the biolog-
ical significance of the contributing variables. It is conceivable that large morphological
changes could have few biological consequences, and some small changes affecting just a
few morphological details could have profound consequences for function. In that light,
weighted measures of disparity that take the biological significance of the changes into
account might seem more justified than measures of disparity per se (see Wagner, 1995).

For reviews of the literature, including critical discussions of metrics and methods, and
summaries of empirical studies, see Foote (1997), Ciampaglio et al. (2001) and Wills (2001).

Variation

Variation within populations is a major theme in evolutionary biology because it is so
fundamental to evolution � phenotypic variation provides the opportunity for selection to
act, and genetic variation enables selection to effect change. Variation is the raw material
on which selection acts, and its structure can influence the outcome of selection. Because
evolution can be constrained by limited or biased variance, the variance�covariance
matrix is sometimes viewed as an intrinsic constraint on evolution; such limits or biases
arising from developmental processes are developmental constraints (see Maynard Smith
et al., 1985). Although that view of variation emphasizes its role as a potential constraint,
the structure of (co)variation itself may be molded by selection. Theoretical models predict
that phenotypic and genetic (co)variance structures evolve to match patterns of develop-
mental and functional integration (e.g. Lande, 1980; Cheverud, 1982, 1984; Wagner, 1988;
Wagner and Altenberg, 1996). This matching is expected to result from differential elimi-
nation of pleiotropic effects between members of different functional complexes, combined
with the maintenance (or augmentation) of pleiotropic effects within a complex. There is
much empirical evidence that phenotypic and/or genetic covariances reflect developmen-
tal and functional relationships among traits, a conclusion based on many exploratory
studies (Olson and Miller, 1958; Berg, 1960; Van Valen, 1962, 1970; Gould and Garwood,
1969). In addition, many studies have deduced the structure of (co)variation among mea-
surements from developmental and functional theories (e.g. Cheverud, 1982, 1995;
Zelditch and Carmichael, 1989; Kingsolver and Wiernasz, 1991; Marroig and Cheverud,
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2001). Most studies concentrate on a single developmental stage, but a few have examined
the ontogenetic dynamics of variance (e.g. Foote, 1986; Zelditch, 1988; Zelditch and
Carmichael, 1989; Zelditch et al., 1993).

The concept of variation is also central to systematic studies, both because systematists
study evolutionary processes and also because the systematic value of a character is partly
a function of its variability. In the systematics literature, the term “variation” is sometimes
used very broadly, such as when talking about “ontogenetic variation”. In that context, the
“variation” results from the mixture of ages in the sample; because individuals differ in
age, they differ in everything that changes with age. Ontogeny is thus the factor explaining
the variation within the sample, but that is not the variance on which selection acts (unless
we seriously entertain the idea that selection favors adults over juveniles, which is unlikely
in the first place and would not have any evolutionary consequences in the second).
To study the variance on which selection could act, we would first need to remove the
variation resulting from the heterogeneity of the sample. Should removing that variation
strike you as an improper manipulation of the data, ask yourself whether it is reasonable
to imagine that selection acts on it.

A classic hypothesis linking variance to disparity is often called the “Kluge�Kerfoot”
phenomenon: traits that vary the most (within populations) are also the ones that most
differentiate populations (Kluge and Kerfoot, 1973). The original empirical support for the
hypothesis was harshly criticized on methodological grounds (e.g. Sokal, 1976; Rohlf et al.,
1983), but the hypothesis has re-emerged in the recent literature with more impressive
empirical support; the dimension of greatest (genetic) variance is sometimes regarded as
the evolutionary line of least resistance (e.g. Schluter, 1996).

Metrics for Disparity and Variance

As mentioned above, there is no universally accepted metric for disparity (there is for
variation, so we will focus on disparity throughout this section). One major distinction
among the available metrics is whether they measure the variety of forms in a sample or
the diversification along branches of a cladogram. The first could be viewed as a static
measure of disparity, the second as a dynamic measure of diversification. We will
focus on the first approach for two reasons: the first is that we define disparity in terms of
variety rather than in terms of magnitudes or rates of diversification; the second is that
ancestral morphologies are rarely observed and known to be ancestral. Without direct
observations of known ancestors, ancestral morphologies must be inferred, and the meth-
ods for inferring ancestral morphologies are still a matter of dispute.

Metrics for the variety of observed forms can be subdivided into two broad classes: (1)
those applied to continuously valued variables (such as size and shape) and (2) those
applied to ordinal or categorical data. The distinction (which is based on the type of data)
is important, because continuously valued variables are measured on an unambiguous
scale, which is not the case for ordinal or categorical data. For example, if we want to
know how different two organisms are, and one is 10 mm while the other is 12 mm, we
can say that their difference is 2 mm. Given a third, which is 14 mm, we would say that
the difference between the first and third is 4 mm, and the difference between the second
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and third is 2 mm. Because 2 mm is equal to 2 mm, we can say that the difference between
the first and second organisms is equal to that between the second and third. We might
choose a scale that takes proportions into account, so that 2 mm counts for more when
organisms are near 1 mm than when they are near 100 mm, but still the scale is unambigu-
ous and measurements are mathematically commensurable. In contrast, if we classify
morphologies into three types � “one”, “two” and “three” � “one” and “two” are taken
to be one unit apart, as are “two” and “three”, but we cannot say that the difference
between “one” and “two” is equal to the difference between “two” and “three”. Perhaps
the first two types differ by the presence or absence of a notochord, whereas the second
two differ by the presence or absence of a tubercle on the tibia. The problem faced here
does not arise when coding discrete classes for phylogenetic analyses because the charac-
ters may be equally informative in that context. However, weighting them equally in
studies of disparity implies that they contribute equally to morphological variety.
Fortunately, size and shape data are continuously valued variables, so we will concentrate
on metrics of disparity suited to continuously valued variables.

The metrics for continuously valued variables can be either Euclidean or non-Euclidean
distances, although most workers use Euclidean distances. We can also distinguish among
metrics by whether the measures are of: (1) linear distances between forms (corresponding
to a standard deviation); (2) squared distances between forms (corresponding to a vari-
ance); or (3) volumes. Measures of volume might seem most desirable because they could
appear to capture the most information about the size of the occupied morphospace.
Unfortunately, no satisfactory measure of volumes is available yet, because measuring
them involves multiplication rather than addition. When distances along dimensions are
multiplied, a trivial distance along one deflates the size of the space. For example, if we
multiply distances along several dimensions, such as 0.4, 0.3 and 0.2, we get a volume of
0.024 and, if we multiply that product by 0.002, we get 0.000048 � therefore, adding infor-
mation about that fourth dimension reduces the size of the space to nearly zero. Logically,
we would expect that the additional information would only increase the size of the space.
Another disturbing feature of this volume-based approach to disparity is that the volume
of several slightly disparate variables can be far larger than the volume of three very
disparate variables and one nearly invariant variable. In the example above we had three
disparate variables and one that is nearly invariant. We might have another case in which
there are also four variables, each with a disparity of 0.1; the product of (0.1)(0.1) (0.1)
(0.1)5 0.0001, which is more than twice the volume of the first case (0.000048). In contrast,
if we restrict our analysis to only the first three variables, the disparity would be (0.1)(0.1)
(0.1)5 0.001 � substantially less than that of the first case (0.024).

If we had an objective and non-arbitrary method for ignoring some dimensions
(so that their low levels of disparity do not deflate the space), we could circumvent these
problems. However, all methods for deciding whether to exclude a variable depend on
subjective arguments, and the decision about whether to exclude a variable can have an
enormous impact on the results. For that reason, we prefer metrics based on standard
deviations and variances. Both standard deviations and variances are equally useful
metrics, and there is no reason to debate which of them is preferable because one is easily
derived from the other. The major reason for using a variance is that variances are
additive. Because of that property, we can calculate the overall disparity of a group, then
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partition it into the contribution made by each taxon (the partial disparity of that taxon;
Foote, 1993a). The additivity of variances means that the sum of partial disparities equals
the overall disparity. However, it is worth noting that the two measures weigh outliers
differently, and consequently their results can differ. Standard deviations and variances
are not linearly related, and a highly distinctive taxon has a much greater impact on a
variance than on a standard deviation.

Measuring Disparity

To measure morphological disparity (MD) by a variance, we calculate:

MD5

PN
j51 D

2
j

ðN2 1Þ (10.1)

where Dj is the distance of species j from the overall centroid (which is the grand mean
calculated over the n species or other groups being analyzed). We can use Equation 10.1 to
calculate both size and shape disparity. For size data, Dj is the difference between the
centroid size of an individual species and the grand mean centroid size. For shape data, Dj

is the Procrustes distance between the average shape of an individual species and the
grand mean shape. We can compute shape disparity directly by estimating those
Procrustes distances, or we can calculate the variances of coordinates obtained by a gener-
alized least squares Procrustes superimposition (GLS) or variances of partial warp scores
(including scores on the uniform component). All three approaches yield the same results
because the sum of squared coordinates obtained by GLS equals the squared Procrustes
distance to the mean, as does the sum of squared partial warp scores. In those analyses
the grand mean shape is the consensus, so if we are using partial warps we can use the
formula:

MD5

PN
j51 PW

2
j

ðN2 1Þ (10.2)

where PW represents the partial warp scores for an individual, so the formula tells us to
sum all the squared partial warp scores for each individual over all individuals. Because
the grand mean shape is the consensus, its partial warp scores are all zeros, so Equation
10.2 is equivalent to Equation 10.1.

Both are also equivalent to:

MD5TrfSg (10.3)

where Tr is the trace of a matrix (the sum of its diagonal elements) and S is the
variance�covariance matrix of the partial warp scores (including the uniform component,
and computed using the grand mean as the consensus). The diagonal elements of a
variance�covariance matrix are the variances, so this formula tells us to sum the variances
of the variables, which takes us back to the squared distances from the consensus.

To exemplify the analysis of disparity, we will measure the disparity of adult body
shape of nine species of piranhas sampled at the 16 landmarks shown in Figure 10.8.
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Before doing this analysis, we remove the shape variance within each species that is
due to ontogeny, allowing us to estimate the shape of an average adult (this is done by
standardizing each species to its maximum adult size). Each species is represented by a
single data point, the mean shape for that species. There are nine species, so N5 9. The
result of the analysis is that MD5 0.00398. Of course, we cannot yet interpret this number �
we cannot say if that value is large or small, or how uncertain it is. Before we can go any
farther, we need to deal with the issue of uncertainty.

To place confidence intervals on MD, we need first to consider the various parameters
being estimated. In general, there is uncertainty in the estimate of the mean shape of each
species, and in the estimate of the consensus. Both uncertainties must be taken into
account when computing confidence intervals. Additionally, when the mean shape of each
species is calculated by removing the variance due to ontogeny (or some other factor), we
must also account for the uncertainty of the regression model used to standardize the
shapes. We may also need to take a further source of uncertainty into account � the sam-
pling of species, because unless we have measured them all we must consider the uncer-
tainty of the grand mean that arises from our sampling of species. If we do not consider
this particular source of uncertainty, we cannot generalize from our sample of species to
the larger group that includes them, although we can make statements about our parti-
cular sample of species that takes the uncertainty of our sampling of them into account.

The confidence intervals might look odd because they frequently are not symmetric
about the mean, even when the distribution of shapes around the GLS consensus is sym-
metric. That symmetric distribution of shapes implies that the uncertainty in the estimate
of the mean is roughly equal in all directions (i.e. it is a hyperspherical solid). Turning to
the estimates of disparity, we can see why the uncertainty in the distance of a species from
grand mean is not symmetric about the mean distance even then. The hyperspherical
distribution of uncertainty in the mean yields a non-symmetric distribution of distances �
there are many more possible locations of a species’ mean that increase the distance than
there are that decrease it. As we can see in Figure 10.9, the line joining the grand mean to
a species’ mean is in a single direction in a high dimensional space; random variation in
the position of the sample mean rarely lies along the line between the species’ mean and
grand mean. In Figure 10.9, D is the distance from the species’ mean to the grand mean
shape, and the circle around X represents the range of uncertainty about the species’
mean. The region within the circle that is a distance D or less from the grand mean is
shaded, and this region is clearly smaller than the unshaded region that is farther than D
from the grand mean. This effect is even more pronounced in higher dimensions.
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FIGURE 10.8 Landmarks sampled on the external body
form of piranhas.
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We can construct confidence intervals and standard errors for MD by bootstrapping.
When we need to take the uncertainty of the regression into account, we first fit a regres-
sion model to the data, determine the residuals, predict the shape expected for each size,
bootstrap the residuals and randomly allocate them to each predicted shape, then refit the
regression model to the data to generate a standardized data set for the bootstrap set. This
is iterated N times (where N is the number of bootstrap sets). If we do not need to take the
uncertainty of the regression into account, we simply resample (with replacement) from
each of the samples. For each bootstrap set of standardized values, we calculate the dispar-
ity of that sample using the formula for MD above. In the case of the adult piranhas
discussed above, the estimate of MD5 0.00398; the 95th percentile over the bootstrap sets
gives us the two-tailed confidence interval on that estimate, 0.00377 to 0.00440.

We still do not know if that value is large or small because we have still not compared
it to the disparity of anything else. We will thus continue the analysis, comparing the
levels of adult disparity to that of juveniles, and comparing the disparities of several
piranha clades (Figure 10.10). Table 10.1 gives the disparities (MD) of juvenile and adult
shapes, as well as the standard errors (SE) for the estimates. We can use a t-test to deter-
mine whether derived traits like mean disparities are significantly different:

t5
MD1 2MD2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðN1 2 1ÞN1SE2
1
1 ðN2 2 1ÞN2SE2

2

N1 1N2 2 2

� �
N1 1N2

N1N2

� �r (10.4)

with (N11N22 2) degrees of freedom. Because MD is computed from the mean shapes of
species, N1 and N2 are the numbers of species in the respective clades. We can also use a
bootstrap procedure like that used to test whether two Procrustes distances are different.
We begin by computing the disparities of the two groups and the difference between those
disparities, and then we resample each data set with replacement, repeating the calcula-
tions of the disparities and the difference between them. After a sufficient number of boot-
straps, we can determine the 95% interval for the range of differences. If this range
excludes zero, we can conclude that the observed difference is significant at the 95% level.

For the most inclusive piranha group (Clade 1), disparity decreases significantly over
ontogeny, as it does in Clade 2. In Clade 3, disparity increases statistically significantly,
but the change is slight � in contrast to the dramatic increase in Clade 4. In Clades 5 and
6, disparity is constant throughout ontogeny. A perhaps counterintuitive result is that
adult disparities of Clades 3 and 4 are significantly greater than that of the group as a

Grand
mean

Species’
mean

Y
D

X

FIGURE 10.9 The line joining a species’ mean to the
grand mean; random variation in the position of the
mean only rarely lies along the line within the shaded
region. Changes in the position of shapes orthogonal to
that line or within the unshaded region increase the dis-
tance to the mean.
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whole (Clade 1), which may seem impossible, but disparities measured this way are not
additive. In these analyses, we are measuring the disparity of each clade relative to that
clade’s own mean � hence a low disparity indicates that few species differ by much from
the mean of that clade. Consequently, a group comprising three or four species that differ
a great deal from each other (and from the group mean) can have a much higher disparity
than a larger group that includes those species. That is because the additional species in
the larger group may all be much closer to the grand mean. Consequently, their values of
Dj are small and contribute relatively less to

P
D2

1 whereas the addition of each species
increases N2 1 by one. The net effect is that MD decreases. For that reason, a large group
containing only a few species that are far from the grand mean can be less disparate than
a small group with the same number of species far from the mean. That is one reason why
morphological disparity can decrease while taxonomic diversity increases.

Partial Disparity

When we want to quantify the contribution that a particular taxon makes to the overall
disparity of a larger group, we want a metric that allows us to partition disparity

FIGURE 10.10 Cladogram of the piranhas ana-
lyzed in this chapter; nodes are numbered to des-
ignate clades.

TABLE 10.1 Disparities of Clades (Numbered as in Figure 10.10), Measured at Two Ontogenetic Stages

Taxon Juvenile Disparity Standard Error Adult Disparity Standard Error

Clade 1 0.00543 0.0003 0.00398 0.0002

Clade 2 0.00575 0.0003 0.00405 0.0002

Clade 3 0.00431 0.0004 0.00550 0.0003

Clade 4 0.00229 0.0002 0.00603 0.0004

Clade 5 0.00116 0.0002 0.00151 0.0001

Clade 6 0.00073 0.0002 0.00051 0.0002

Disparities of juveniles are measured at the transition from larval to juvenile growth; those of adults are measured at maximum

body size attained by each species.

284 10. ECOLOGICAL AND EVOLUTIONARY MORPHOLOGY

3. APPLICATIONS



additively. Therefore, we need an alternative to the method discussed above. The alterna-
tive does allow us to estimate partial disparity (PD) of the species, and the partial dis-
parities sum to the total disparity. We estimate partial disparities (PD), following the
procedure outlined by Foote (1993a), in terms of the variance contributed by each individ-
ual species:

PD5
D2

i

N2 1
(10.5)

where Di is the distance of the ith species from the grand mean and N is the total number
of species (or other groups). If we wish to calculate the partial disparity of several species
(e.g. a subclade in a larger clade), we can sum their individual partial disparities, yielding
the partial disparity of that group. The utility of this approach can be seen clearly in a
comparison of adult partial disparities for clade 4 of the piranhas. The sum of partial
disparities for all nine species is the same as the disparity of clade 1 (within rounding
error). The sum of partial disparities for Clade 4 is 0.00203, which is 51.1% of the total. The
partial disparity of a single species, S. elongatus, accounts for 36.3% of the total disparity of
adults of these nine species (Table 10.2). Quantifying partial disparities is one method for
estimating the phenotypic distinctness of a particular taxon, which may have a practical
application in conservation biology (e.g. optimization of preserved biodiversity).

Measuring Variation

Studies of variation, like those of disparity, use a variance as a metric. The major
computational difference between analyses of disparity and variance are that (1) studies of
variance use the mean of a single homogeneous population as the grand mean, and (2)
individuals (rather than mean shapes of species) are the data points in studies of variance.
One quick method for estimating the variance in shape is to calculate the variance for

TABLE 10.2 Partial Disparities (PD) of Adults, and the Standard Errors of PD

Species PD % MD Standard Error

P. denticulata 0.00039 9.82 0.00032

S. elongatus 0.00144 36.27 0.00029

S. gouldingi 0.00026 6.55 0.00031

S. manueli 0.00033 8.31 0.00032

S. altuvei 0.00014 3.53 0.00032

S. spilopleura 0.00023 5.79 0.00032

P. cariba 0.00036 9.07 0.00028

P. nattereri 0.00039 9.82 0.00027

P. piraya 0.00043 10.83 0.00031
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all the coordinates obtained by a GLS superimposition and sum those variances over all
landmarks (this is exactly the same as calculating the trace of the variance�covariance
matrix, and can be done in any spreadsheet). This method, while quick and intuitive, will
not provide confidence intervals. It can also be risky if it leads to thinking of variances as
being at landmarks (recall that changes in relative landmark positions are distributed
across landmarks, a topic discussed in context of superimposition methods). Just as change
is not located at a landmark, neither is variance.

ANALYZING THE STRUCTURE OF DISPARITY

To this point we have talked solely about the magnitudes of disparity and variance; but
in many studies we want to know if shapes are randomly distributed throughout the mor-
phospace. A closely related question (do samples occupy the same subspace?) will be
addressed in Chapter 11. Here, we focus on two questions concerning the homogeneity of
morphospace occupation. The first asks how widely shapes are dispersed, i.e. are they as
close together as we would expect if they were randomly distributed. This question is
answered using nearest-neighbor analysis. The second question asks whether there are
clusters and gaps indicating hierarchical structure (which could be phylogenetic or
ecological or both). This question is answered by combining cluster analysis to infer the
hierarchical structure with the cophenetic correlation test to determine whether the
inferred clustering accurately reflects the morphological distances between samples.

Nearest-Neighbor Analysis

Nearest-neighbor analysis, as the term implies, examines the smallest distances between
shapes. From those distances, we can ask whether shapes are more (or less) similar than
expected by chance. If they are closer than expected by chance, we would reject the null
hypothesis in favor of one of clustering; conversely, if they are further apart than expected
by chance, we would reject the null model in favor of a hypothesis of “over-dispersion”
(or “repulsion”). Because the null model is the distribution expected by chance, it is impor-
tant to consider what the reasonable null model might be. One reasonable null model is
that the probability of being at any location in the morphospace is equal (uniform) over
the entire space, and is independent of the shape of any other species. Another reasonable
null model is that shapes follow a normal (Gaussian) distribution. The uniform model
is a reasonable null for comparisons among species, whereas the Gaussian model is
more reasonable when analyzing distributions of individuals around the mean of a
homogeneous sample. Having two null models allows us to guard against accepting a
hypothesis of a particular random distribution.

Nearest-neighbor analysis is another method pioneered by Foote (1990), so we begin by
reviewing his approach, and then we extend it to geometric shape data. The first step in a
nearest-neighbor analysis is to compute the nearest-neighbor distance Di for each of the N
species (or other groups) in the study. For the sake of brevity, we will refer to “species” as
the units of analysis, but the analysis follows the same protocol even when the units are
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individual specimens. The next step is to construct a second data set using Monte Carlo
simulations. That is done by estimating the mean and range of each variable; from the
data, N2 1 simulated specimens are generated with values randomly drawn from the
observed range. Monte Carlo simulations are similar to bootstraps in that they simulate
data based on a given null model and an observed set of data, but they differ in that boot-
strapping is carried out using a non-parametric resampling procedure whereas Monte
Carlo simulations are based on a distributional model. The distribution of the original
data set is parameterized, and those parameters are used to generate a simulated dataset
having the distribution of the observations. Given the simulated data, a second nearest-
neighbor distance, Ri, is computed between each observed specimen and the one closest to
it in the Monte Carlo set (note that Ri is not a nearest-neighbor distance between Monte
Carlo specimens, but rather the distance between an observed specimen and the nearest
Monte Carlo simulated specimen).

Foote provides a measure that allows us to compare the fit of the simulated distances to
the observed ones, the proportional distance Pi for the ith specimen. This is a ratio whose
numerator is the difference between the two distances (Di, the observed nearest-neighbor
distance, and Ri, the Monte Carlo nearest-neighbor distance) and whose denominator is
the Monte Carlo nearest-neighbor difference:

Pi 5
Di 2Ri

Ri
(10.6)

If the random model fits the data, we would expect that, on average, Di would equal Ri,
and hence the mean Pi over all specimens (Pmean) is zero. When Pmean is less than zero the
observed specimens are more clustered than expected by chance; conversely, if Pmean is
greater than zero they are further apart than expected by chance. To determine whether
zero lies within the confidence interval, we estimate the range of Pmean by running the
Monte Carlo simulation many times.

To generate a Monte Carlo set under a multivariate normal (Gaussian) model, we
must estimate the mean and standard deviation of each variable; to generate a Monte
Carlo set under a uniform distribution model, we must estimate the upper and lower
bounds of the range for each variable. It can be difficult to estimate the range accurately
when sample sizes are small because, at small sample sizes, the observed minimum and
maximum will underestimate the “true” range. Thus, rather than using the observed mini-
mum and maximum values to estimate the range, Foote uses estimators developed by
Strauss and Sadler (1989) for the “true” minimum (Y) and the “true” maximum (Z) of a
distribution:

Y5
NA2B

N2 1
(10.7)

Z5
NB2A

N2 1
(10.8)

where A is the lowest observed value and B is the highest observed value in N specimens.
Rather than use the observed minimum and maximum values, Foote determines the mean
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and the standard deviation of a normal distribution fitted to the data. He uses normal the-
ory (citing Feller, 1968) to predict the mean and standard deviation:

Xmean 5Y1
ðZ2YÞ

2
(10.9)

SDX 5
ðZ2YÞ2

12

� �
(10.10)

and he uses those to estimate the range parameters:

Y5Xmean � 3
1/2SDX (10.11)

Z5Xmean 1 3
1/2SDX (10.12)

Extending nearest-neighbor analysis to geometric data is straightforward. Distances Di

and Ri are measured by Procrustes distance; estimates of means, standard deviations or
ranges used in the Monte Carlo simulation are obtained by calculating the statistics from
the coordinates of each landmark. The rest is straightforward: a Monte Carlo data set is
generated and Ri is calculated for each specimen, and these are used to estimate Pmean. The
simulation is reiterated numerous times, yielding the distribution of Pmean values over the
Monte Carlo sets. It is then possible to carry out all the usual statistical tests using this
distribution.

We illustrate nearest-neighbor analysis by testing two hypotheses about piranha
disparity:

1. Piranha body shapes, both juvenile and adult, are further apart than expected.
2. Those shapes are more clumped than expected.

The reason for testing these hypotheses separately is that a conservative test of one is a
liberal test of the other. For the hypothesis of over-dispersion, the conservative approach
uses the Strauss and Sadler estimator of the range � the estimator enlarges the range
so that large distances between points will not necessarily be further apart than expected.
However, that expansion of the range can lead to a liberal test of clumping (under-
dispersion) because, within that expanded range, observations may be closer than
expected. To be conservative, we would test the hypothesis of over-dispersion using the
enlarged range, but we would use parameters of the observed range to test a hypothesis of
clustering. Each hypothesis will be tested using two null models, one uniform and the other
Gaussian, because we have no good reason to view one as a more plausible random model.

Using the uniform model, the average Pmean of the juveniles is 20.2810 and the 95%
range of Pmean is from 20.3551 to 20.1792, an interval that excludes zero. This result sug-
gests a non-random distribution, with distances being smaller than expected under a ran-
dom uniform model. Using the Gaussian model, the average Pmean520.2758 and its range
is from 20.3450 to 20.1950, an interval that again excludes zero. Both results thus argue
against the hypothesis of a random distribution and also against over-dispersion. Instead,
they suggest clustering, the hypothesis we will explicitly test after we have tested the
hypothesis of over-dispersion for adults.
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Using the uniform null model, the average Pmean of the adults is20.267 and the range is
20.3365 to 20.1689, an interval that excludes zero. This result also suggests a non-random
distribution, with distances being smaller than expected under a random uniform model.
Using the Gaussian model, the average Pmean520.2636 and the range is 20.3312
to 20.2036, an interval that also excludes zero. As we found for the juveniles, the data
argue against the null hypothesis of a random distribution, and also against over-
dispersion. Therefore, we now explicitly test the hypothesis of clustering.

We now test the hypothesis of clustering using the narrower estimate of the range. For
the juveniles, based on the uniform model, the average Pmean520.3172 with a range
of 20.3813 to 20.2247, an interval that excludes zero and supports the hypothesis of
clustering. Analyzing the data under the null Gaussian model, the average Pmean520.3006
with a range from 20.3700 to 20.2372, an interval that again excludes zero. Taking
these results altogether, they suggest that juvenile piranha body shapes are more tightly
clustered than expected under either null model.

For the adults, the uniform null model yields an average Pmean520.2537 and a range
of20.3092 to20.1788, an interval that excludes zero. These results again support the infer-
ence of clustering. Analyzing the data under the Gaussian null model, the average
Pmean520.2388 with a range from20.3091 to 20.1598, an interval that also excludes zero.
Taking these results altogether, they suggest that adult piranha body shapes are more
tightly clustered than expected under either null model.

Nearest-neighbor analysis can be used to examine patterns of variation as well as
disparity. To exemplify this, we return to the ontogenetic variation in mouse skulls.
Considering that each sample comprises individuals from a single homogeneous popula-
tion, we would expect random variation to follow a Gaussian distribution. Results of
analyses based on both range estimators (i.e. the parameter values estimated using the
Strauss�Sadler estimate of the range (SS), and those estimated from the data (DP)) are
given in Table 10.3. It is difficult to argue that the data suggest a departure from random
variation. When the parameter estimates are based on an expanded range, the two
youngest samples seem to be more clustered than expected under the null hypothesis of a
Gaussian distribution. That expansion seems appropriate in light of the small sample sizes,
but using it could be considered an overly liberal test of clustering. When estimates are

TABLE 10.3 Nearest-Neighbor Analysis of Skull Shape Variation in M. m. domesticus, Sampled at 5-Day
Intervals (Average Pmean and the Range of Pmean Obtained from 100 Monte Carlo Simulations)

Age SS (Pmean) DP (Pmean)

Average Range Average Range

10 20.0929 (20.1356)�(20.0276) 20.0028 (20.0425)�(0.0377)

15 20.0944 (20.1503)�(20.0334) 0.0153 (20.0326)�(0.0598)

20 20.0409 (20.0963)�(20.0178) 0.0126 (20.0313)�(0.0658)

25 20.0745 (20.1343)�(20.0051) 0.0122 (20.0495)�(0.0654)

Parameter estimates are based either on the Strauss�Sadler estimators (SS) or on the parameters of the data (DP).
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based on the observed values, the range of Pmean invariably includes zero and, for that
reason, we cannot rule out the Gaussian null model.

Cluster Analysis

The test for clustering in the nearest-neighbor analysis tells us that species tend to be
closer together than expected for a random distribution, but it does not tell us if there is
one large cluster, or several smaller ones. In other words, it does not tell us about the
homogeneity of the clustering. Several methods have been developed to identify groups
or clusters based on the distances between species, and to depict that clustering in a
dendrogram showing nested sets of species. Below, we present a few of these methods to
illustrate their variety and discuss their limitations. Each method will be used to analyze
the same data set: mean shapes of mandibles from 31 squirrel species, including tree
squirrels, ground squirrels and flying squirrels (Figure 10.11A). Scores on the first two
principal components of these data (Figure 10.11B), which account for 60% of the varia-
tion, suggest there may be some hierarchical structure in the data; but that structure
appears to be more consistent with ecological similarity than with the phylogenetic
relationships that have been inferred (Figure 10.11C).

The simplest clustering approach is called, appropriately enough, single linkage. The
first link connects the two closest taxa. The second link connects the next two closest taxa,
which may be a different pair, or it may connect a third taxon to a member of the first
pair. It often occurs that the first pair forms a nucleus and other species are successively
linked to this growing core; because they are on the periphery of the core, they tend to be
closer to a species that is already in the group than to another species that is still on the
outside. Consequently, this method tends to link taxa in long chains, successively linking sin-
gletons in a comb-like dendrogram that suggests little hierarchical structure (Figure 10.12A).
In those cases where two groups of several species are linked, they are linked through the
one species in each group that are closest to each other (like the tips of two ellipses aligned
on the same axis). There is no implication of any general similarity among the other mem-
bers of the group.

A somewhat more complicated method is the average linkage method, or unweighted
pair-group method with arithmetic means (UPGMA). Again, the two closest taxa are
linked first. At each successive step, the taxa that are joined are the ones that would have
the smallest increase in average linkages. This is analogous to linking two ellipses that are
side-by-side before linking ones that are tip-to-tip. The average of the linkages between
the side-by-side pair will tend to be smaller than the average between the tip-to-tip pair
unless the tips are very much closer than the sides. Similarly, this method will tend to
avoid creating groups that are elliptical or making them more eccentric than they already
are. This tends to create a more tree-like dendrogram (more hierarchical structure) than
single-linkage does. In the UPGMA dendrogram (see Figure 10.12B), less than 1/4 of the
species were linked as singletons to existing clusters, in contrast to more than 2/3 linked as
singletons in the single linkage dendrogram.

A still more complicated method is Ward’s (1963) minimum variance. In this method,
the taxa that are joined are the ones that create the smallest increase in variance in the new
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group. It is broadly similar to UPGMA, in that some measure of within-group differences
is minimally increased at each step. Since average distances are related to variances,
UPGMA and Ward’s method will tend to produce similar clusters, as shown in
Figure 10.12C. In fact, in this example, the biggest difference between UPGMA and
Ward’s dendrograms is the greater variety of levels at which groups are linked; there are
very few differences in group composition.

FIGURE 10.11 Cluster analyses of
squirrel mandibles, part I. (A) Landmarks
on representative Sciurus (North American
tree squirrel). (B) Scores on first two PCs;
symbols represent seven major monophy-
letic groups within the family, which are
geographically and ecologically distinct. (C)
Phylogenetic relationships of the clades,
based on Mercer and Roth (2003).
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In choosing between methods (or results), it is important to recognize that none of
these clustering methods performs a statistical test to determine whether one linkage is
significantly better than the alternatives. Consequently, it seems unwise to place much
trust in short branches. But even for clusters separated by long branches from the next
linkage, there is no explicit test to determine that the members of that cluster are distinct
from the other taxa or other clusters. One could take the dendrogram as the starting point
for a MANOVA hypothesis, but you should be wary of testing one ad hoc hypothesis after
another. It would be better to start with an a priori hypothesis of group memberships, test
those by MANOVA, and then use clustering and nearest-neighbor analyses to understand
the distribution of similarities and differences among taxa.

Because all of these methods will generate a hierarchical dendrogram whatever the
distribution of interspecific distances happens to be, it is important to test whether

FIGURE 10.12 Cluster
analyses of squirrel mandibles,
part II. (A) Single linkage; (B)
average linkage; (C) Ward’s
linkage.
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the structure of the diagram accurately reflects the hierarchical structure in the data. The
cophenetic correlation coefficient (Sneath and Sokal, 1973) compares heights of tips above
the node at which they are joined to the observed correlation matrix (transformed to a
distance matrix by subtracting each correlation from 1.0) for the data used to generate the
dendrogram. Values less than 0.85 are generally indicative of poor fit.
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C H A P T E R

11

Evolutionary Developmental Biology (1):
The Evolution ofOntogeny

Studies of evolving ontogenies are grounded in two important insights. The first is that
all evolutionary change arises from changes in ontogeny and therefore we need to under-
stand how ontogenies evolve in order to understand the origins of morphological diver-
sity, i.e. disparity (Zelditch et al., 2003b; Adams and Nistri, 2010; Drake, 2011; Frederich
and Vandewalle, 2011; Gerber, 2011; Ivanovic et al., 2011; Piras et al., 2011). What modifi-
cations of ontogeny are responsible for the disparity of a group, and whether those modifi-
cations increase or decrease disparity can be answered by comparative analysis of
ontogenies. As found in a study of damselfishes, disparity of both body shape and diet
increase over ontogeny (Frederich and Vandewalle, 2011). But disparity of body shape
decreases over ontogeny despite an increase in disparity of diet in piranhas (Zelditch
et al., 2003b). In European cave salamanders, foot shape and interdigital webbing both
decrease in disparity over ontogeny because some species maintain a webbed juvenile foot
(and juvenile foot shape) as they grow whereas others increase webbing and change foot
shape as they grow; the result is similar adult morphologies via different developmental
processes (Adams and Nistri, 2010). By combining comparative studies of ontogeny with
analyses of disparity at two or more developmental stages, it is possible to test hypotheses
about the developmental origins of disparity.

The second insight is that organisms have time-extended phenotypes. An organism’s
phenotype is not static � it changes from age to age in both form and function. To com-
prehend that dynamic form and function relationship, as it evolves, we need to under-
stand how developing organisms negotiate the ontogenetic transformations in form and
function. Several studies have examined the relationship between ontogenetic transforma-
tions in shape and measures of performance such as bite-force or biomechanical para-
meters such as mechanical advantage of the masticatory apparatus (Birch, 1999; Abdala
et al., 2001; Pfaller et al., 2010; Tanner et al., 2010b; La Croix et al., 2011a,b). For example,
studies of carnivores found that feeding performance matures far later than skull size,
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mandibular shape and feeding biomechanics, and that hyenas are far more protracted in
their development than coyotes (Tanner et al., 2010a; La Croix et al., 2011a,b).

The concept central to all studies of evolving ontogenies is the “ontogenetic trajectory”,
introduced by Alberch and colleagues (1979) to signify the complete record of the physical
appearance of the organism. It has been defined as much by an iconic diagram
(Figure 11.1) as by words or formula. The diagram depicts a phenotype as a trajectory in a
space of three dimensions: size (s), age (a), and shape (σ). Two of these (size and age) are
one-dimensional, but shape obviously is not. When the diagram was initially drawn,
shape was typically characterized by a single ratio but, as explicitly stated by Alberch and
colleagues (p. 299), the picture remains the same no matter how many shape coordinates
are required to specify the system. Now that we have methods for multivariate shape
analysis, we can construct the ontogenetic trajectory for a multidimensional ontogeny of
shape, although in the case we show here (Figure 11.2), the piranha Serrasalmus gouldingi,
we do not have any data on age. We thus have only two axes � size and shape. We begin
with this example, despite our lack of data on age, for two reasons. First, many studies do
not have information about age so empirical studies of ontogenetic trajectories are often
restricted to size and shape data, and second, the ontogeny of shape for this case is simple.
By “simple” we mean that the direction of shape change is constant throughout
ontogeny � it is not a function of size (or age). We can therefore represent the ontogeny of
shape by a single vector, and score each individual for its position along it relative to size.
These scores are obtained by projecting the shape data onto a line in the direction of the
ontogenetic shape change, i.e. the vector of regression coefficients when shape is regressed
on log-transformed centroid size (Drake and Klingenberg, 2008).

When we have age data, as we do for the cotton rat, Sigmodon fulviventer, we can
include that in the diagram (Figure 11.3). This diagram is more difficult to read because it
shows three-dimensions projected onto a two-dimensional plane. To see the relationship
between shape and size, and between shape and age, we can show each pair of axes sepa-
rately (Figure 11.4A, B, respectively). As evident in the plot for shape versus size, the rela-
tionship between shape and size is linear but that between shape and age is not. The other
non-linearity is not evident in this plot because the regression vector is obtained by linear
regression of shape on size or age. But the ontogeny of shape changes its direction from
age to age (Figure 11.5). In this case, the ontogeny of shape cannot be represented by a
line. Between two ages, such as birth and 10 days, it can be represented by a line, but that

FIGURE 11.1 The ontogenetic trajectory, as depicted by Alberch et al.,
1979.
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line reorients and points in another direction between 10 and 20 days, and it reorients
again between 20 and 30 days, and points in yet another direction from that age through
sexual maturity. To represent the ontogeny of this species, we need a curve through a
multidimensional shape space not a shape axis. The ontogenetic trajectory, as represented
in the iconic diagram, will thus be an oversimplification of actual ontogenies, especially
when extended to multivariate data. However, that does not compromise the value of the
concept. Even when it takes more than three dimensions to draw it, the ontogenetic trajec-
tory is nonetheless a function of age, size and shape.

The difficulty of drawing complex trajectories does have important implications for
depicting comparative analyses, a subject we discuss in more detail below. The difficulty
is that it is not easy to visualize even three dimensions. Even to show the relationships
between shape, size and age we eased the task of visualization by flattening the picture,
projecting it onto two pairs of dimensions. We did not try to show the whole ontogeny of

FIGURE 11.2 In the absence of any data on age, the ontogenetic trajectory of shape and size for a piranha,
Serrasalmus gouldingi. The plot shows the Procrustes distance from the juvenile, indicating the magnitude of
change; the deformation grid illustrates the change in shape.
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shape as it changed direction from age to age. If we try to compare two species, the
diagrams become even more complicated because we would then have two (curving) tra-
jectories and we would need to represent the geometrical relationships of these curves
within and between the trajectories. Projections of two or more complex multidimensional
ontogenetic trajectories can be misleading and distort those geometric relationships so we
cannot rely on the pictures to see by how much, or in what, two or more trajectories differ.
Fortunately, we do not use these projections to formulate or test hypotheses.

In this chapter, we discuss the range of hypotheses about the evolution of ontogenetic
trajectories that can be tested and how to test them. Some hypotheses cannot be tested
without information about chronological age. We emphasize “chronological” age because
of the contrast some authors have made between “chronological” and “biological” or
“developmental” age. This contrast has been central to some of the arguments about the
necessity for age data; one argument for that necessity is that information about age is
needed for process-oriented studies � it is growth relative to time that provides the
information about process and therefore without age data, the analysis devolves into a
merely pattern-oriented study (Blackstone, 1987). One counterargument is that the mathe-
matical model for allometry is the solution of the differential equation for growth rates
relative to time (Strauss, 1987). A second is that chronological time does not have any
theoretical priority over other estimates of biological age, which includes size, for the
description of comparison of growth patterns (Strauss, 1987). The argument is not that size
is a proxy for chronological age but rather that size provides information about biological

FIGURE 11.3 The ontogenetic trajectory of a cotton
rat, Sigmodon fulviventer.
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(developmental) age. Whether age or size provides the more relevant information is some-
times addressed empirically, such as by analyzing the dependence of the variable of inter-
est on both size and age, as in the study of woody plant stem structure and function
(Rosell and Olson, 2007). When size is a better predictor of the feature of interest, and
when species are at different developmental stages at the same chronological age, size
might be viewed as a better predictor of both structure and function.

Despite the arguments regarding the merits of analyses based on developmental age, or
size, some questions cannot be answered without information about chronological age
because they are not about either intrinsic biological age or the predictability of structure
and/or function from size (or developmental age). Instead, they are specifically about the

FIGURE 11.4 Projecting the
three-dimensional trajectory onto
a pair of planes, shape versus
size, measured as log centroid
size and shape versus age.
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link between ontogeny and extrinsic time, as in studies that relate evolving ontogenies to
ecology. That requirement for age data may be most obvious for the case of heterochrony,
which concerns the changes in developmental rate and timing that produce the parallelism
between ontogeny and phylogeny (Gould, 1977). Without age data, it is not possible to
distinguish between various changes that produce the same morphological outcome, such
as a later onset of development, a slower rate of development or a shorter duration of
development. All produce a descendant that resembles the ancestral juvenile. In another
case, we also need information about age because the questions are specifically

FIGURE 11.5 The direc-
tions of ontogenetic change of
the cotton rat skull measured
between successive ages (in
days postnatal).
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about developmental rate and timing. The focus is on timing because the issue is the coor-
dination between periodic biological phenomena (phenology) and the environment, both
abiotic and biotic. This has become an important issue recently because one of the best
documented responses to global warming is a shift in phenologies. One of the most
intriguing (and worrying) patterns is the discordant shifts in phenologies across trophic
levels, leading to a mismatch between organisms and their foods (Both and Visser, 2005;
Post and Forchhammer, 2008; Post et al., 2008; Both et al., 2009; Miller-Rushing et al.,
2010). To investigate such (mis)matches, we need to relate timing of development events
(such as birth and weaning) to the environment, both thermal and biotic.

The link between ecology and developmental rate has motivated many studies of
heterochrony as well (Gould, 1977; McKinney, 1986; Emerson et al., 1988; Schweitzer and
Lohmann, 1990), but the theory of heterochrony does not supply a general enough frame-
work for analyzing changes in phenology because the theory of heterochrony as
developed by Gould (1977) and formalized by Alberch et al. (1979) makes specific predic-
tions about morphology. Those predictions may be wrong even if developmental rate and
timing do evolve because heterochrony predicts that only developmental rates or timings
evolve. Developmental rate and timing can evolve and so can ontogenies of shape, hence
the descendant shape might not be predictable by extrapolating the ancestral ontogeny.
That the predictions are empirically refuted for some cases does not compromise the value
of the formalism devised by Alberch et al. for the study of heterochrony, a formalism that
we discuss in detail below, because the formalism was intended to apply solely to studies
of heterochrony and it is applicable to all cases of heterochrony. The scheme is nonetheless
limited in its applicability because it applies solely to studies of heterochrony, as Gould
and Alberch et al. defined “heterochrony”. We highlight that matter of definition because
there are multiple definitions of heterochrony in the literature, which are often inconsistent
and even mathematically incommensurate. That could be considered merely a matter of
semantics (McKinney, 1999), but the predictions that follow from a theory, as well as the
formal representation of a theory, depend on what the theoretical terms mean.

The long-standing fascination with heterochrony has made age data seem necessary for
virtually all studies of evolving ontogenies, even when the questions are not about the link
between ontogeny and ecology. But the relationship between shape and size is no less
important than that between shape and time. Both in context of function and development,
allometry is interesting in its own right. We thus begin with a discussion of allometry, and
why it is interesting in its own right, and then how to analyze it. We first review the
formalism for the analysis of allometry using traditional morphometric variables because
some hypotheses make more sense when framed in terms of those (size) measurements.
The interpretation of the results requires scaling coefficients. We then more briefly discuss
the geometric analysis of ontogenetic allometry (which was presented in Chapter 8).
Although the regression coefficients are not readily interpretable, geometric morpho-
metrics has notable advantages for testing a range of hypotheses about the evolution of
ontogeny, the final subject of this chapter.

This chapter begins with the review of the formalism for the analysis of allometry using
traditional morphometric variables, then briefly recalls the analysis of allometry using
geometric morphometric data, and then examines a series of hypotheses that can be tested
about the evolution of ontogenetic trajectories. As well as comparing ontogenetic
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trajectories, we also incorporate analyses of disparity to dissect the developmental sources
of disparity. These analyses are done without any information about age, so we next con-
sider hypotheses that require age data to test, and how to test them when species differ in
their ontogenetic trajectories. Finally, we discuss the disparity of ontogeny itself.

WHYALLOMETRY IS INTERESTING IN ITS OWN RIGHT

On purely biomechanical grounds, we often expect organisms to change shape when
they change size in either ontogeny or evolution. Were organisms to grow (or evolve to a
larger size) without changing shape, they would likely decrease their ability to perform
such vital functions as respiration, locomotion and feeding. That is because, under geomet-
ric scaling, a length of x scales to an area of x2 and a volume of x3. To see why that might
impair performance, consider the cross-sectional area of a weight-bearing limb bone. If the
length, area and mass of a small organism are in the proportions of 2:4:8, those for a some-
what larger organism would be 4:16:64, and for a much larger organism they would be
10:100:1000. Thus, length has increased fivefold whereas area increased 25-fold and
volume increased 125-fold. Geometric scaling could cause limbs to buckle under the more
rapidly increasing mass, and also cause bones loaded by force-generating muscles to bend.
For that reason, changes in size are expected to lead to changes in shape to maintain
functional equivalence. This reasoning does not predict changes in proportions of length
measurements (because they scale to the same power). They are functionally equivalent
at constant proportions, i.e. two jaws with the same ratio between input and output
lever arms are equal in their mechanical advantage.

Allometric scaling maintains functional equivalence over a range of sizes for
certain basic physical properties (such as surface area:volume relationships). These might
be expected to scale predictably over an entire ontogenetic series even though young
animals are not just small they are also young and often ecologically different than
older (larger) members of their own species. For that reason, they do not face the same
functional demands but they might for length:surface area or for surface area:volume rela-
tionships. Otherwise we might expect scaling relationships that alter proportions by more
(or less) than predicted from the scaling of lengths to areas to volumes. That by itself is
interesting because it means that, over an individual’s life-time, it is increasing its size,
changing its shape, and experiencing transitions in functional demands and that, at every
age, the organism must be competent to perform whatever functions it currently has while
it is continually changing both form and function. How these transformations in
size, shape and function are interrelated is a central question in studies of ontogenetic
allometry.

One question is whether the ontogenetic trajectory is directed towards the optimal
adult shape or instead towards an optimum weighted in favor of the most vulnerable
age. The trajectory may be oriented towards the adult morphology because that mor-
phology is stable for longest, at least in organisms that have determinate morphogenesis.
It may therefore be more consequential to fitness than the morphologies that precede
it. Yet the adult shape will never be reached at all if organisms do not survive vulnerable
pre-adult phases. However, the direction of the trajectory may represent a compromise
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direction across a sequence of age-specific optima because it could change direction
from age to age, as in the case of the cotton rat discussed above. The direction of the
trajectory, as well as the rate at which shape develops, may be related, in part, to age-
specific functional demands or mortality rates. Curving trajectories for shape have
been documented for several mammalian species (Zelditch et al., 2003a; Tanner et al.,
2010b; La Croix et al., 2011a), although linear trajectories are detected or assumed in others
(e.g. Monteiro et al., 1999; Ponce de Leon and Zollikofer, 2001; Strand Vioarsdottir et al.,
2002; Bastir and Rosas, 2004). In organisms that undergo metamorphosis, transitions in
direction may be abrupt, decoupling larval from juvenile morphogenesis (Strauss and
Altig, 1992; Ivanovic et al., 2007, 2011). Whether trajectories are linear, smoothly curving
or abruptly reorienting can have important implications for the evolution of morphology
because the decoupling between phases could allow for their independent evolution.
For example, one study of scapular ontogeny concludes that the shape of the infant
constrains that of the adult (Young, 2008) � the shape of the infant is hypothesized
to drive the pattern of postnatal growth. Another view of constraints limiting the
evolutionary flexibility of ontogenetic allometries is based on analyses of craniofacial
form in muroid rodents; according to this hypothesis, functional constraints of later
development, more specifically those due to the biomechanics of mastication, lead to
conserved postweaning ontogenies. Early ontogenies are more flexible, being less con-
strained by function.

In studies that emphasize the biomechanical or other functional interpretations of scal-
ing coefficients, the ratios between linear, areal and volumetric measurements are biologi-
cally meaningful. There are theories that predict the expected values, so it is those values
that need to be measured. Allometric coefficients are also interpretable developmentally,
and many studies of allometry are concerned with the developmental interpretation of the
coefficients. To lay the foundation for that interpretation we introduce the conventional
formalisms for studies of ontogenetic allometry.

FORMALISMS FOR THE ANALYSIS OF ONTOGENETIC ALLOMETRY:
TRADITIONAL MORPHOMETRIC DATA

The traditional formalism for the study of allometry relates the increase in size of one
part (Y) to that of another (X). Often, X is intended to represent the size of the whole
organism. To make our discussion of allometry as concrete as possible, and to ease the
transition from geometric to traditional morphometric data, we will focus on the case of
the piranha, Serrasalmus gouldingi, one of the examples we have used throughout this text.
To analyze its ontogenetic allometry using traditional morphometric data we measure a
variety of lengths and depths (Figure 11.6). For our measure of body size we will use the
measurement extending from landmark 1 to landmark 7, which is termed “standard
length” (SL) and is frequently used as the measurement of body size in studies of teleosts,
so, in our example, X5 SL. The other 29 measurements are the measures represented by
the vector {Y1, Y2, Y3, . . . Y29}. We first discuss the mathematical analysis of allometry,
then follow this with an interpretation of the coefficients obtained by the analysis, and
then consider their developmental significance.
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The relationship between X and Y often fits a model, the power law (Huxley, 1932):

Y5 bXk (11.1)

where k is the growth rate of part Y relative to X, and b is the size of Y when X is at unit
size. To ease fitting the model to data, it is often rewritten in a linear form:

logðYÞ5 logðbÞ1 k logðXÞ (11.2)

Expressed in this form, we can use linear regression to estimate the parameters b and k;
they are the intercept (because log(1)5 0) and slope, respectively, of a linear regression of
log(Y) on log(X). Table 11.1 gives the regression coefficients, b and k, of the variables
shown in Figure 11.6 regressed on SL. We should note that the literature is inconsistent on
the symbols used for these two coefficients, but because b and k are widely used in the
literature on allometry, we follow that convention.

Usually, the coefficients are estimated by simple bivariate regression, but multivariate
regression yields the same estimates as obtained from bivariate analysis. We can therefore
treat the bivariate estimates of k as components of the vector {k1, k2, k3,. . .kP}, where P is
the number of measurements. The estimates of log(b) are then components of the vector
{log(b1), log(b2), log(b3), . . .log(bP)}. In studies of traditional size measurements, allometric
coefficients are often estimated by principal components analysis (PCA), following
Jolicoeur (1963) who first proposed that PC1 is a multivariate allometry vector when PC1
is extracted from a variance�covariance matrix of log-transformed measurements.
Conceptually, multivariate regression and PCA differ in that PCA does not single out one
variable as the independent size variable. Instead, size is a linear combination of the

FIGURE 11.6 Landmarks sampled on S. gouldingi,
and the traditional morphometric measurement scheme
based on those landmarks.

306 11. EVOLUTIONARY DEVELOPMENTAL BIOLOGY (1): THE EVOLUTION OF ONTOGENY

3. APPLICATIONS



TABLE 11.1 Allometric Coefficients for the 30
Measurements of Serrasalmus gouldingi Shown in
Figure 11.6

Variable b k

v2 2 0.939 0.806

v3 2 0.613 0.885

v4 2 1.163 0.85

v5 2 2.643 1.225

v6 2 1.396 1.042

v7 2 1.512 1.002

v8 2 1.383 0.928

v9 2 1.974 1.104

v10 2 1.761 1.22

v11 2 1.931 1.198

v12 2 1.595 1.136

v13 2 2.378 1.186

v14 2 2.228 1.116

v15 2 1.681 1.21

v16 2 1.781 1.225

v17 2 1.551 1.171

v18 2 2.572 1.17

v19 2 1.938 1.085

v20 2 1.685 1.104

v21 2 1.991 1.225

v22 2 1.834 1.217

v23 2 1.473 1.072

v24 2 1.674 0.939

v25 2 2.686 1.12

v26 2 1.558 1.129

v27 2 1.815 0.898

v28 2 1.231 0.811

v29 2 1.160 0.751

v30 2 0.635 0.903
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variables that explains the correlations among them. When the variables are very highly
correlated, as they usually are in ontogenetic studies of size measurements, least squares
regression and PCA tend to give very similar results. For example, Table 11.2 shows the
estimates of the slope for the measurements of S. gouldingi obtained by regression and
PCA. The numbers may appear to be quite different, but the differences disappear when
the coefficients are rescaled to make each one the ratio between k for a dependent variable
and k for SL, the independent variable in the regression. Because SL is the independent
variable, kSL5 1. Rescaling the coefficients by dividing each by the one for SL gives the
values shown in Table 11.3. The estimates obtained by multivariate regression and PCA
are identical. The important distinction between regression and PCA is that PCA does not
provide estimates of b.

Interpreting Allometric Coefficients

The interpretation of k is straightforward � it is the growth rate of the measured part
relative to that of a standard (X), such as overall body size. When k is 1.0, the growth of
the measured part keeps pace with X. Their proportions are constant throughout growth.
Such measurements are termed “isometric”. When k is greater than 1.0, the measured part
grows more rapidly than X so the relative size of that part increases; these measurements
are termed “positively allometric”. When k is less than 1.0, the measured part grows more
slowly than X, so its relative size decreases even though its absolute size increases; these
measurements are termed “negatively allometric”. The problem with classifying coefficients
solely in terms of ratios between the part-specific growth rate (k) and the growth rate of X
is that all ks are relative growth rates. When several part-specific ks equal each other, their
proportions (relative to each other) are constant. Several measurements have nearly equal
allometric coefficients, including the four measurements of body depth (measured from
landmarks 4 and 5, which are at the anterior and posterior bases of the dorsal fin; v15,
v16, v21 and v22). All four are positively allometric relative to body length, so the
body (in that region) deepens relative to its length. Among the negatively allometric
measurements are the most anterior lengths (v2, v3, v4, v8, v28, v29, v30) and the two
most posterior ones (v24, v27). This means that measurements in the anterior head
and caudal regions shorten relative to the whole body (of course they do not actually
shorten � they lengthen in an absolute sense, it is just that they shorten relative to the
length of the body). Consequently, the head and caudal region form a relatively smaller
fraction of body length in adults than in juveniles.

To look at a second example, this one of mammalian craniofacial growth, we consider
the ontogenetic allometries of the two rodents mentioned above, the cotton rat (Sigmodon
fulviventer) and house mouse (Mus musculus domesticus). These two species differ strikingly
in life-history; cotton rats are precocial, meaning that they are relatively mature at birth.
Cotton rats open their eyes within a day of birth, and can also hear and even walk at that
time. In contrast, house mice (like most muroid and sciurid rodents) are altricial; their
eyes do not open for 10 days, when their ears also open and they begin to walk. Despite
that striking difference in maturity at birth, both species wean at approximately 21 days.
The ontogenetic allometries for 12 craniofacial measurements, relative to skull length, v1
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TABLE 11.2 Allometric Coefficients (k) Computed by Multivariate
Regression (R) and PCA

Variable R PCA

v1 1 0.694

v2 0.806 0.559

v3 0.885 0.614

v4 0.85 0.589

v5 1.225 0.851

v6 1.042 0.723

v7 1.002 0.696

v8 0.928 0.644

v9 1.104 0.766

v10 1.22 0.847

v11 1.198 0.832

v12 1.136 0.789

v13 1.186 0.823

v14 1.116 0.775

v15 1.21 0.84

v16 1.225 0.85

v17 1.171 0.813

v18 1.17 0.812

v19 1.085 0.753

v20 1.104 0.766

v21 1.225 0.85

v22 1.217 0.845

v23 1.072 0.744

v24 0.939 0.651

v25 1.12 0.777

v26 1.129 0.783

v27 0.898 0.623

v28 0.811 0.563

v29 0.751 0.522

v30 0.903 0.627

v1 is (standard length) the independent variable in the multivariate regression so

its value for k must be included to make these vectors comparable.
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TABLE 11.3 Ratios Between Allometric Coefficients (k) of Each
Variable and Standard Length (v1) for the Coefficients Computed by
Multivariate Regression (R) and PCA

Variable R PCA

v2 0.81 0.81

v3 0.89 0.88

v4 0.85 0.85

v5 1.23 1.23

v6 1.04 1.04

v7 1 1

v8 0.93 0.93

v9 1.1 1.1

v10 1.22 1.22

v11 1.2 1.2

v12 1.14 1.14

v13 1.19 1.19

v14 1.12 1.12

v15 1.21 1.21

v16 1.23 1.22

v17 1.17 1.17

v18 1.17 1.17

v19 1.09 1.09

v20 1.1 1.1

v21 1.23 1.22

v22 1.22 1.22

v23 1.07 1.07

v24 0.94 0.94

v25 1.12 1.12

v26 1.13 1.13

v27 0.9 0.9

v28 0.81 0.81

v29 0.75 0.75

v30 0.9 0.9
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(Figure 11.7) are shown in Table 11.4. The several measurements that are strikingly
negatively allometric in both species (v4�v7) are all measurements of width, especially the
widths of the cranial base. The most striking positive allometries are, for the house mouse,
v9�v11, which are all measurements of facial length except that v10, which extends from

TABLE 11.4 Ontogenetic Allometric Coefficients (k) for Postnatal
Growth of the House Mouse (Mus musculus domesticus) and Cotton Rat
(Sigmodon fulviventer) for the Craniofacial Measurements Shown in
Figure 11.7

Variable House Mouse Cotton Rat

v2 1.10 1.39

v3 0.95 0.75

v4 0.61 0.57

v5 0.45 0.63

v6 0.37 0.65

v7 0.57 0.62

v8 0.96 0.93

v9 1.34 1.10

v10 1.45 1.68

v11 1.27 1.02

v12 1.13 0.94

v13 1.07 1.09

FIGURE 11.7 Landmarks sampled on ventral skull of the
cotton rat, Sigmodon fulviventer, and house mouse, Mus muscu-
lus domesticus, and the traditional morphometric measurement
scheme based on those landmarks.
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the tip of the zygomatic arch to the first molar, and thus measures the lengthening of the
zygomatic spine as well as facial lengthening. For the cotton rat, the most pronounced
positive allometries are for v2 and v10, the most anterior premaxilla and that distance
between zygomatic spine and molar. Thus, these coefficients convey what we know to be
general features of mammalian development � the skull generally lengthens relative to its
width, the face lengthens even more so, and widens relative to the width of the braincase.

The interpretation of b (or log b) is less straightforward, and there has been some
controversy about its biological meaning. One reason for doubting that b has any general
biological significance is that its value depends on the units of measurement; unlike k, b is
not a dimensionless quantity. However, a more important one is that log(b) is the value of
log(Y) when log(X) is zero, a size at which Y might not yet exist. For example, when
the body is 1 mm long, the dorsal fin might not have developed yet so it cannot have a
meaningful size. Additionally, log(b) is estimated under the assumption that k is constant
from log(X)5 0, not just that it is constant over the range of values actually sampled.

Under one condition, b does have a simple interpretation: when species do not differ in
k. In that case, differences in b will persist throughout the entire ontogeny. Although we
might reasonably hesitate to infer a value for log(Y) when log(X)5 0, the difference
between species at any point in ontogeny will be invariant over ontogeny. Although we
might also be hesitant to infer that species have diverged either when log(X)5 0 or before,
we could conclude that the difference arose prior to the stage when we first observe
them and persists throughout the rest of ontogeny. That difference in b says how those
populations will differ at any given value of X. Under other conditions, b can be viewed as
just a parameter needed to predict Y at a given value of X. To determine whether species
differ at a particular age of interest (such as birth, or the transition from larval to juvenile
growth, or at weaning), we can use the regression equation to determine the predicted
values for the dependent variables at the relevant value for X.

The Developmental Meaning of b and k

Most of the literature on ontogenetic allometry has focused on the developmental
meaning of k because b is static � it is not a descriptor of development but rather of where
the regression line intersects the Y-axis. At the heart of the literature is the view of growth
as a multiplicative process. This was the rationale given by Huxley (1932) for the power
law, and it is the basis for cellular models of allometric growth (Katz, 1980). Within that
context, the meaning of k has been viewed from both spatial and temporal perspectives.
Huxley (1932) emphasized the spatial interpretation of k, proposing that differences in
k over the organism indicate spatially organized “growth intensities”. He noted that values
of k tend to be spatially coherent, rising and falling in organized patterns across the body.
To help visualize spatial patterns in k, we can first put the coefficients on the organism
rather than in a table (Figure 11.8). We can see that they increase from the head to the
middle of the body, then fall towards the tail, although not to a level as low as found in
the head. This is (approximately) an inverted U-shaped gradient, which is interesting
because it is the inverse of the gradient found in several teleost larvae (Fuiman, 1983).
This suggests that the allometry of juvenile growth compensates for that of larval
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growth: the head and caudal body initially grow very rapidly and, later, during juvenile
growth, the middle of the body catches up. The spatial distribution of growth rates can
also suggest an anteroposterior gradient, meaning that the rates fall off linearly from the
head to the tail. To analyze these patterns more rigorously Huxley constructed “growth
profiles”, which are plots of allometric coefficients as a function of their position along
body axes.

Laird and colleagues have stressed the temporal significance of allometric coefficients
(Laird, 1965; Laird et al., 1968). Even though time is not explicitly incorporated in studies

FIGURE 11.8 Allometric coefficients
of Serrasalmus gouldingi. Coefficients
higher than 1.0 indicate positive allome-
try; coefficients lower than 1.0 indicate
negative allometry; and coefficients near
1.0 indicate isometry.
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of allometry, it is nonetheless implicit. This becomes evident when considering why
the power law holds in the first place. As mentioned before, the primary biological
explanation for allometry is that growth is a multiplicative process. When analyzing the
relationship between size and time, the best-fitting models are usually not linear but rather
are sigmoidal in form. An important feature of these models is that growth rates decay
over time. Similarities in decay rates are interpreted by Laird (1965) as the explanation for
the linear relationship among log-transformed measurements. In effect, all measurements
follow the same growth curve; their differing values of k tell us how they are displaced
relative to each other in time � different parts of the body reach the same point on their
growth curves at different times. Laird et al. (1968) elaborated on this theory, stating the
relationship between k and lag time (ΔT) as:

ΔT52
1

α
lnðkÞ (11.3)

where α is the decay rate and k is an allometric coefficient.
To measure decay rates we need information about age, but we can use Equation 11.3

to understand the temporal relationships among growth curves even without known age
samples so long as we are willing to assume that all measurements whose logs are linearly
related have the same decay rates. Because growth rates decay over time, we would intuit
that a more negatively allometric part has decayed over a longer time, and that it has
decayed for longer because it began growing earlier. The increment of time by which we
need to shift one curve to match another that starts growing later is ΔT. Based on this
interpretation of allometric coefficients, we would conclude that those for piranha body
growth mean that the head and caudal peduncle develop before the midbody, that the eye
is the first structure to develop, and that the body elongates before it deepens. In the case
of the mammalian skull, we would interpret the allometric coefficients to mean that the
broad bulbous cranium of the neonate, resulting from the rapid prenatal growth
of the brain, becomes relatively narrowed over postnatal growth by the rapid elongation
of the skull as a whole and especially of the face, which also widens relative to the cranial
base, as part of the overall increase in facial dimensions relative to braincase and cranial
base.

The spatial and temporal perspectives on allometric coefficients are not antagonistic.
The spatial coherence noted by Huxley, interpreted within the temporal framework of
Laird, suggests that growth is spatiotemporally organized. There is no reason to think that
either space or time is primary. We do not need to adopt one view over the other � they
are mutually consistent, and help explain each other. With increasing information
about the spatial determination of development, in conjunction with that on its temporal
organization, we can relate allometric coefficients to the underlying developmental
processes that explain them.

To interpret these coefficients in terms of both growth and function, we can apply theo-
ries about scaling relationships to growth. Applied to ontogenetic series, such theories
may explain ontogenetic allometry in terms of the ontogeny of function. For example,
in many larval teleosts the head and caudal region are highly positively allometric, which
is due to the early demands imposed by swimming, feeding and respiration (see, for
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example, van Snik et al., 1997). The converse allometric pattern is seen later, in juvenile
growth, as exemplified by the coefficients of S. gouldingi. These patterns are hardly
surprising, which is reassuring if our aim is to make sense of ontogenetic allometry in
functional and ecological terms. A striking example of a study of allometric scaling is one
that tests the hypothesis that scaling maintains functional equivalence of the mandibular
symphysis (where the right and left sides come together) and resistance to “wish-boning”
(lateral transverse bending). Previous study of adults showed that positive evolutionary
allometry of symphyseal measures (particularly its width) maintains similar load resis-
tance capabilities as increasing symphyseal curvature, and consequent stress concentra-
tions increase with size (Hylander, 1985). As a result, adults of species that differ in
size maintain a similar capability to resist loads. Studying the ontogeny of symphyseal
curvature and width, as well as relative stress, in two species of macaques, Vinyard and
Ravosa (Vinyard and Ravosa, 1998) found no difference between the two ontogenies in
relative stresses, and also that stress does not change significantly throughout ontogeny in
either species. Thus, ontogenetic allometry maintains the functional equivalence in stress
and strain levels during postnatal growth.

Because theories about developmental controls over the spatiotemporal organization of
relative growth, as well as theories about the functional significance of scaling relationship,
are most easily expressed in terms of traditional morphometric measurements, studies of
allometry using traditional morphometric measurements will remain an important part of
evolutionary developmental biology.

Revisiting Geometric Morphometric Analyses of Allometry

In Chapter 8, we introduced multivariate regression, the method we use to analyze the
relationship between shape and size. To review that, the model for allometry is:

fY1;Y2;Y3; . . .YPg5 fm1;m2;m3; . . .mPgX1 fb1; b2; b3; . . .bPg1 fε1; ε2; ε3; . . .εPg (11.4)

where {Y1, Y2, Y3 . . .YP} is the vector of shape variables, X is centroid size and {m1, m2, m3,
. . .mP}, {b1, b2, b3, . . .bP} and {ε1, ε2, ε3, . . .εP} are vectors of slope coefficients, intercepts and
residuals, respectively. We would not use principal components analysis for geometric
analyses of allometry because PC1 of geometric shape data need not be aligned with the
ontogenetic trajectory whenever there are factors other than age in the data (e.g. sexual
dimorphism). Of course it could be aligned with the ontogenetic trajectory, but there is no
reason to use PCA when multivariate regression is guaranteed to give the optimal descrip-
tion of the dependence of shape on size. Also, given that we have a size metric (centroid
size), there is no need to estimate “size” by a linear combination of the measured (shape)
variables.

As is always the case, it does not matter which shape variables we use because we
obtain the same trajectory regardless of whether we use coordinates obtained by a general-
ized Procrustes analysis, by partial warps plus uniform components or the full set of PC
scores. But even though the complete description of the ontogenetic change does not
depend on the choice of variables, the coefficients obviously do. Thus, in striking contrast
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to the coefficients obtained from traditional morphometric data, those obtained from geo-
metric shape data are not interpretable one by one. Another notable difference is the abil-
ity of geometric analyses to synthesize all the data (including all interlandmark distances
that were not measured). We can best appreciate that difference by comparing two pic-
tures, one showing the allometric coefficients drawn on the skulls and the other showing
the deformed grids depicting the ontogenetic change in skull shape (Figure 11.9). What we
can see more readily from the grids are the striking changes in palatal proportions medi-
ally versus more laterally.

Another notable difference is that geometric data yields more interpretable results in
comparative studies. We first present a series of hypotheses about the evolution of ontog-
eny, and then discuss how to test them.

FIGURE 11.9 Allometric coefficients of the two rodent skulls; (A) cotton rat; (B) house mouse. Coefficients
higher than 1.0 indicate positive allometry; coefficients lower than 1.0 indicate negative allometry; and coefficients
near 1.0 indicate isometry.
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HYPOTHESES ABOUT THE EVOLUTION OF ONTOGENETIC
TRAJECTORIES

Until recently, most studies of evolving ontogenies focused on three possibilities:
(1) ontogenetic scaling; (2) heterochrony; and (3) “transpositional” allometry. None of
these three alter the ontogenetic trajectory. These are shown as vectors in a two-dimen-
sional shape space (Figure 11.10A, B, C), which makes the contrasts among them easiest to
see but which precludes depicting the relationships between shape and size or age. The
first two alter the relationship between shape and either size or age, and the first is actu-
ally a special case of the second. In the case of ontogenetic scaling (Figure 11.10A), the des-
cendant’s shape can be predicted from the ancestral regression equation � the descendant
has the shape that the ancestor would at the descendant size. So, if the descendant grows
to a larger size, the descendant juvenile has the shape of the ancestral adult. Conversely, if
the descendant grows to a smaller size, the descendant adult has the shape of the ancestral
juvenile. The evolutionary change in shape thus results from the difference in rate or tim-
ing of growth as increases or decreases in growth rate, or longer or shorter durations of
growth, alter the descendant’s adult size. In the second case, it is the relationship between
shape and age that is altered (Figure 11.10B). The descendant has the shape predicted for
a younger or older ancestor. Ontogenetic scaling is a special case of this because ontoge-
netic scaling preserves the relationship between shape and size; in the more general case,
evolutionary changes in size and shape can be dissociated from each other. In the case of
heterochrony, it is the rate or timing of shape change relative to age that is modified. The
shape of the descendant appears in ancestral trajectory or can be obtained by extrapolation
of that ontogeny, but the regressions of shape on age or size are not identical.
Heterochrony, and the special case of ontogenetic scaling, are encompassed by the classic
definition of heterochrony (Gould, 1977; Alberch et al., 1979).

The third case is called “transpositional” allometry because the two trajectories are
identical; it is just that one is translated (transposed) along the y-axis relative to the other
(see Figure 11.10C). In this case, the trajectories point in the same direction, but the ontoge-
nies diverged before the youngest observed age. As a result, the trajectories are parallel
rather than coincident. At no point subsequent to divergence (and therefore, at no point in
the observed phase of development) does the shape of the descendant appear in the ontog-
eny of the ancestor. The two are consistently different � the same features that distinguish
the two at birth distinguish them as adults. It is possible that the ancestor and descendant

FIGURE 11.10 Hypotheses about the evolution
of ontogenetic trajectories drawn as two vectors in
a two-dimensional shape space. Three hypotheses
predict no change in the ontogenetic trajectory of
shape (A, B, C). The remaining three predict
change in the ontogenetic trajectory of shape and
early morphogenesis (D, E) and/or lengths of the
ontogenetic trajectories (F, G).
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also differ in rates or timings of growth and/or morphogenesis, so there are more than
just the three possibilities shown in Figure 11.10.

There are also at least four cases in which the ontogenies of shape are modified
(see Figure 11.10D, E, F, G). In the first case, the two trajectories differ solely in direction �
the species are identical at the outset of development but progressively diverge over time
(see Figure 11.10D). There is no general term for this case, although one suggestion is
“allometric repatterning” (Webster and Zelditch, 2005). In the second case, the two trajec-
tories differ in the starting point as well as direction; they differ in shape at the outset of
the observed development but their ontogenetic trajectories point towards the same adult
shape so they converge on the same adult form (see Figure 11.10E). This has been termed
“ontogenetic convergence” (Adams and Nistri, 2010). Of course, the divergent trajectories
could also lead to divergent adult morphologies; the species could diverge further over
the course of development, increasing the distance between the ancestral and descen-
dant shapes. In the third case, the two trajectories differ in length plus direction
(see Figure 11.10F); the two species develop at different rates, in different directions. To
our knowledge, there is no term for this possibility. In the fourth case, the two species
differ in all three attributes: shape at the outset of the measured phase, direction and
length (see Figure 11.10G). This is another case for which, to our knowledge, there is no
term. Species that have complex, curving ontogenetic trajectories add to these possibilities.

At present, we do not know which of these possibilities occurs most frequently, nor do
we know which contributes most to disparity. Until fairly recently, most studies focused
on ontogenetic scaling, in particular, or heterochrony, more generally. As a result, these
two topics dominate the literature. But that does not mean that either is especially
common or that either makes a large contribution to disparity. One reason for focusing on
ontogenetic scaling was to find the traits that do not evolve by extending or truncating the
ontogenetic trajectory because such extensions or truncations were expected when body
size evolves; consequently, the traits that do not exhibit such extensions or truncations
were thought to require a specific, adaptive explanation. In that sense, ontogenetic scaling
simply served as a “criterion for subtraction” (Huxley, 1932; Gould, 1966). Heterochrony,
however, was seen as especially interesting, one that challenged conventional evolutionary
theory. Whether frequent or not, heterochrony was seen as worthy of special attention.
The reasons why Gould thought that heterochrony is especially interesting are important
for understanding his analytic scheme as well as its reformulation by Alberch and
colleagues. Gould’s arguments about the theoretical meaning of heterochrony are
grounded in intuition rather than formal theory, but those intuitions motivated the fasci-
nation with heterochrony. As Gould construed “heterochrony”, it referred to the changes in
developmental rate and/or timing that produce the parallelism between ontogeny and phylogeny.
Because ontogenetic scaling is a special case, we include it in our discussion of heterochrony.

Heterochrony

Gould (1977) devoted his entire book on ontogeny and phylogeny to heterochrony
because he regarded it as especially interesting and as challenging to traditional evolution-
ary theory. The first reason why he regarded heterochrony as especially interesting is that
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he thought that it could yield relatively large morphological changes by simple modifica-
tions of development, yielding large bursts of change in a short amount of time (Gould,
1977, 1982; Maderson et al., 1982). Second, heterochrony was thought to occur by selection
on size and/or life-history parameters, leading to predictable changes in morphology as a
by-product (Gould, 1977, 1982, 1988; Maderson et al., 1982). In regarding morphological
evolution as a by-product of selection on size or life-history, Gould followed Huxley’s
(1932) reasoning that shape evolves by selection on size. The morphological changes might
have no selective value; they are simple correlates of selection on size and/or life-history
(Maderson et al., 1982; Gould, 1988). This connection between heterochrony and evolution-
ary allometry is seemingly obvious, but Gould was the first to recognize and emphasize it.
The idea that morphology evolves in a specific direction due to selection on size or life-
history is why Gould thought that heterochrony provides the best empirical data for the
study of developmental constraints (Gould, 1988). The third reason why Gould found
heterochrony to be so interesting is that it linked ecology to morphology; he argued, for
instance, that progenesis (truncated development, see below) would be causally linked
to unstable (r-selected) environments that promote rapid maturation whereas neoteny
(slow development) would be linked to stable environments (Gould, 1977, 1988). Under
contrasting ecological conditions, heterochrony would yield the same morphological
outcomes � descendant adults that resemble ancestral juveniles, under contrasting
ecological conditions.

As well as regarding heterochrony as interesting, and even as especially informative
about developmental constraints, Gould also aimed to rehabilitate the concept of recapitu-
lation. He denied that recapitulation is a general rule, but he, nevertheless, argued that the
idea had been unfairly dismissed and for reasons unrelated to the failure of the theory.
Certainly, he was not alone in attempting to rescue the idea of recapitulation; others,
especially Cope (1887) also tried to do so, but by applying the concept to individual parts
(or measurements). Unlike them, Gould took an organismal, multivariate view of parallel-
ism. He strongly opposed the trait-by-trait approach to morphology, whereby each
individual organ (or measurement) is accorded its own explanation. Instead of that
approach, which he called “atomistic”, he favored viewing organisms as integrated enti-
ties, bound together by developmental correlations. Formal models predicting the evolu-
tionary response to selection on size (or any other trait) for the bivariate (Lande, 1979) and
more general multivariate case (Lande and Arnold, 1983) confirm Gould’s intuition
that selection on body size or life-history trait can indirectly affect morphology, just not
necessarily in the direction of ontogenetic scaling or heterochrony.

The fundamental idea underlying all these implications of heterochrony is that growth,
morphogenesis and maturation can be dissociated from each other. Growth refers to an
increase in size (with size being equated to geometric scale), morphogenesis refers to the
process that alters shape, and maturation to the attainment of sexual maturity. Although
this separation, especially between size and shape, has sometimes been viewed as justified
solely on operational grounds, i.e. as necessary for the construction of Gould’s clock
model, Gould justified separating them on the grounds that their dissociability is neces-
sary for heterochrony. Of course, they are correlated within any ontogeny, but they are
potentially dissociable in their evolution. When growth and morphogenesis are dissociated
from age, the descendant has the ancestral shape and size at a different developmental
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stage. For example, the descendant adult could have the ancestral juvenile shape and size.
If growth is dissociated from morphogenesis and maturation, then the descendant adult
would have the ancestral adult shape at a different size. It might, for example, have the
ancestral adult shape at the ancestral juvenile size. Finally, if morphogenesis is dissociated
from growth and maturation, then the descendant adult would have the shape found in
the ancestral ontogeny at a different age and size.

The purpose of the clock model (Figure 11.11) was to reveal the modifications of
growth, morphogenesis and maturation because the same morphological outcome could
arise from different modifications of life-history. Thus, to understand the links between
ecology and heterochrony, we need to distinguish between the modifications of develop-
ment that produce the same morphological outcomes. Although the clock model is rarely
used now, understanding it is important because it supplied the context for the scheme
that replaced it. The face of the clock contains two arcs and one bar. One arc is a shape
axis, the other is a size axis and the bar is the age axis. The values of the ancestral shape
are plotted along the arc, with the values for the youngest age on the left. The ancestral
sizes are plotted on the size axis, lining up the ages at which the ancestor has that size,
and also lining up the shape at that size. The entire ontogeny of the ancestral shape is
represented on the clock, but the descendant is analyzed at one single stage. Not surpris-
ingly, the need to single out one stage for comparison prompted much discussion about
what that stage should be and whether it should be chosen according to chronological age,
developmental age, or even size. Whatever standard is used, the objective is to find the
matching ancestral size and shape at that point. When found, the hands of the clock are
arranged to point to it; if the matching shape occurs at an earlier stage in the ancestor, the
“shape hand” of the clock will point to the left. Similarly, if the matching size occurs at an
earlier stage in the ancestor, the “size hand” also points to the left. Differences between
ancestor and descendant in chronological age at the developmentally comparable stages
are indicated by the filled portion on the age bar.

The clock, and the terms defined by it, proved confusing and the scheme was
soon replaced by the one devised by Alberch and colleagues, whose intent was to clarify
the terminology of heterochrony. To that end, Alberch et al. (1979) redesigned Gould’s
formalism, using a more conventional representation of a three-dimensional space: three
mutually orthogonal axes (Figure 11.12). They also replaced Gould’s static comparative
framework by a dynamic one; the descendant ontogeny (not just one point along it) is
analyzed in conjunction with the ancestral ontogeny. Each ontogeny is represented as a
vector in the three-dimensional space defined by the ancestral values of size and shape.
The comparisons are made with respect to four parameters: (1) α, the age at the onset
of development; (2) β, the age at offset of development; (3) kσ, the rate of development

FIGURE 11.11 Gould’s (1977) clock model. The descendant’s size,
shape and age at one developmental stage are compared to the ances-
tor’s ontogeny of shape, size and age. The hands of the clock show the
change from ancestral to descendant values pointing from the descen-
dant’s age-specific shape and size to the corresponding ancestral values
(no hand is shown if there is no change). The shape hand points to the
left, so the descendant adult has the morphology of a younger stage in
the ancestral ontogeny.
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(i.e. the rate of change in shape); and (4) ks the rate of growth (i.e. the rate of change in
size). Each parameter can differ in two directions (and increase or decrease) yielding the
eight pure heterochronic perturbations (Table 11.5). Each produces either a pedomorphic
(5childlike) descendant or the converse, a peramorphic descendant, i.e. one who goes
“beyond” the endpoint of the ancestral trajectory. There are also two perturbations of
growth rate yielding proportional giantism and dwarfism, which are not usually consid-
ered to be heterochronic perturbations because they do not yield either pedomorphic or
peramorphic descendants. Instead, they yield giant or miniature replicas of the ancestral
shape. Nevertheless, they are usually included for the sake of completeness.

Of course, combinations of these pure cases are also possible. Naming the combinations
is less straightforward and if we found a combination of 1δks and 2δkσ, for example,

TABLE 11.5 Definitions of the Eight Pure Heterochronic Perturbations and their Morphological Expression,
as Defined by Alberch et al. (1979)

Control Parameter Incremental Change Process Morphological Expression

α 2δα Predisplacement Peramorphosis

1δα Postdisplacement Pedomorphosis

β 2δβ Progenesis Pedomorphosis

1δβ Hypermorphosis Peramorphosis

Kσ 2δkσ Neoteny Pedomorphosis

1δkσ Acceleration Peramorphosis

ks 2δks Proportional giantism

2δks Proportional dwarfism

FIGURE 11.12 Alberch et al. (1979) formalism for
the study of heterochrony. The clock is redrawn by
representing the ancestral shape, size and age as
three mutually orthogonal axes. Species are com-
pared with respect to the age at onset of development
(α), rate of development (kσ), rate of growth (ks), and
age at termination of development (β). Shown is an
example of neoteny, a decrease in developmental rate
(2δkσ). The score for the descendant’s adult shape is
lower than that of the ancestor’s, so the descendant
adult has the morphology of a younger stage in the
ancestral ontogeny. See Table 11.5 for the names of
the heterochronic perturbations defined by changes
in these three parameters.
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we would not likely want to construct a compound name from the labels for each one.
For that example, the compound term would be some form of “proportional giantism plus
neoteny” but, by definition, proportional giantism produces a giant replica of the ancestral
morphology whereas neoteny produces an adult that resembles the ancestral juvenile.
The combination of the two is self-contradictory. But the fact that there are no terms for
modifications in size plus shape is problematic, although it is an interesting feature of the
scheme that only two perturbations predictably affect growth or size. The others
affect only development and shape. As a result, one cannot use this scheme to predict
how heterochrony will affect size. Even though ontogenetic scaling is a special case of
heterochrony, there are no terms for perturbations that lead to extensions or truncations of
both size and shape.

Shea (1983a) introduced terms for perturbations that affect size and shape, including
rate hypermorphosis or hypomorphosis, and time hypermophosis or hypmorphosis. These
are sometimes used in the anthropological literature, but for readers unaccustomed to
them they can be confusing because they combine the feature that is modified (growth
rate or time) with a term for a morphological outcome of a change in developmental
timing (1δβ). The distinction being made is between an increase or decrease in rate (with
no change in the duration of growth) and an increase or decrease in duration (with
no change in the rate of growth). Rather than using a term that means a delayed offset in
development for an increased rate of growth, it seems clear enough, if more verbose,
to say that durations of growth are extended or truncated, or that rates of growth and
development are increased or decreased.

As should be evident by this point, both the clock model and the Alberch et al. formal-
ism can only be applied when the ancestral and descendant ontogenetic trajectories
shape are the same. The trajectories can differ only by extension or truncation. That is not
a limitation of either scheme because, by definition, heterochrony and scaling refer to
extensions or truncations of conserved ontogenetic trajectories of shape. The two schemes
are thus intended to be used solely for the cases in which the ancestral and descendant
ontogenies differ only by extension or truncation. If the two ontogenies differ otherwise,
the hypotheses of heterochrony and scaling are (or should be) rejected. If that hypothesis
of a conserved ontogenetic trajectory of shape is not rejected, the two schemes can be used
to diagnose the heterochronic perturbation. If the hypothesis is rejected, the question is
whether the trajectories are parallel or not.

Parallel Trajectories (Transpositional Allometry)

Parallel trajectories (see Figure 11.10C) are at least as intriguing as heterochrony and
ontogenetic scaling because they mean that early development is less conserved than
later. Consequently, adults differ in precisely the same direction that larvae or infants
did. This is surprising in light of the conventional view that early development is more
conservative than later, although the larval stage is still quite late in development. The
conservative developmental phase is the “phylotypic period” � the stage at which
embryos of all members of a phylum look the same (Seidl, 1960; Sander, 1983; Slack
et al., 1993). That period begins at onset of neurulation and ends with somitogenesis
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(see Kimmel et al., 1995). Whether it actually is so conservative is controversial; several
studies have challenged the idea that embryos initially diverge and then converge, an
idea that has been termed the “hour-glass” model (e.g. Bininda-Emonds et al., 2003) on
the grounds that the phylotypic period is not as conservative as generally thought. But
even if distantly related species do resemble each other through somitogenesis, it
would not be surprising to find that larvae or neonates differ substantially in shape.
Even fairly modest differences in development are likely to have large impacts on mor-
phology when rates of development are high. What is surprising is not that divergence
occurs during larval or fetal development but rather than divergence occurs only
then � over the entire observed phase of development, the ontogenetic trajectories are
parallel.

One hypothesis that could explain parallel trajectories is that later stages of
ontogeny are subject to more severe functional constraints. This has been postulated for
the case of sigmodontine rodents; the reason why post-weaning growth allometries
might be conservative is the biomechanical constraints of masticatory function; that
earlier developmental stages are less conserved could result from the absence of
such constraints in the fetus or suckling pup (Voss and Marcus, 1992). Another
explanation is serial correlations between developmental stages; just as modifications
early in development will have cascading effects on later stages, selection on adult
morphology will lead to divergence at earlier stages. This hypothesis presupposes
that individuals who deviate from the mean as adults also do so (and in the same
direction) much earlier in ontogeny. Although there is some evidence for that correla-
tion between developmental stages, one recent study of human craniofacial shape
found a weak correlation between newborns and adults, although correlations are high
between three year olds and adults (Bulygina et al., 2006). An alternative hypothesis,
which also assumes a high correlation between early and late developmental stages, is
that selection for changes of early ontogeny leads to modifications of adult mor-
phology; the shape of the adult may even be constrained by the shape of the infant
(Young, 2008).

Divergent Ontogenies of Shape

The remaining hypotheses predict that ontogenies diverge in ontogenetic trajectories for
shape. What differentiates the hypotheses is what else is expected to differ and whether
morphologies are expected to diverge or converge over the course of development. The
reason for expecting one of these patterns, as opposed to heterochrony or parallel trajecto-
ries, is that there is no good a priori reason to expect that the spatiotemporal patterning of
morphogenesis, or any other aspect of morphogenesis, growth or maturation is conserved.
Rather, ontogenies can evolve by modifications of allometry, by accelerating or retarding
growth, or by increasing or decreasing the durations of growth or by increasing or
decreasing either the rates or durations of morphogenesis. Thus, in the absence of any rea-
son for expecting that ontogenies are constrained in their evolutionary possibilities, to
determine which modifications occur we need to consider all the possibilities shown in
Figure 11.10 as well as all variants upon them.
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TESTING HYPOTHESES ABOUT THE EVOLUTION OF ONTOGENY

Ontogenetic scaling and heterochrony are the most frequently studied and reported
kinds of modifications of ontogeny (e.g. Shea, 1983b, 1992; McKinney, 1986; Wayne, 1986;
McKinney and McNamara, 1991; German et al., 1994; Neige et al., 1997; Cronier and
Courville, 2003; Lieberman et al., 2007; Galatius et al., 2011; Gerber, 2011; Piras et al.,
2011). That is partly because the definition of “heterochrony” was broadened to the point
that any and all modifications of ontogeny qualify as “heterochrony” (see, especially
McKinney and McNamara, 1991). But even if we discount studies that make heterochrony
synonymous with the evolution of ontogeny, we are still left with an enormous number of
studies that support the hypothesis of either heterochrony or ontogenetic scaling. Many of
these use traditional morphometric data, so we first consider some of the methodological
issues posed by these data and whether methodology might explain why heterochrony
and scaling appear to be the predominant modes of evolutionary change in ontogenies.
However, we would also point out many studies use ontogenetic scaling primarily as a
criterion of subtraction. The idea is to identify the traits that do not evince scaling rather
than to support a hypothesis of scaling.

Numerous studies do reject a hypothesis of heterochrony or scaling in favor of parallel
ontogenies. For example, parallel trajectories have been inferred for postnatal facial ontog-
eny of several hominins (e.g. Ponce de Leon and Zollikofer, 2001; Ackermann and Krovitz,
2002; Zollikofer and Ponce de Leon, 2010), for postnatal mandibular ontogeny of common
and pygmy chimpanzees (Boughner and Dean, 2008), for postnatal scapular development
of anthropoids (Young, 2008) as well as for postnatal development of the postcranial
skeleton for callitrichines (Falsetti and Cole, 1992) and anthropoids (Jungers and Cole,
1992). Additionally, this pattern has been detected in post-weaning craniofacial ontogeny
of seven pairs of congeneric sigmodontine rodents (Voss and Marcus, 1992) and for
the evolution of giant damselfishes (Frederich and Sheets, 2010). Some of these cases,
however, have been vigorously challenged, most notably that of postnatal hominin facial
ontogenies (e.g. O’Higgins et al., 2001; Strand Vioarsdottir et al., 2002; Cobb and
O’Higgins, 2004; Bastir et al., 2007) on the grounds that hypothesis of a conserved ontoge-
netic trajectory can be rejected when tested statistically.

The question raised by the case of postnatal hominin facial ontogenies is whether
methods commonly used to infer shared ontogenies fail to detect divergent ones even
when trajectories do in fact diverge. Because many studies have used traditional mor-
phometric data, and these data remain valuable for the reasons discussed above, we first
consider the methodological issues raised by them.

Framing Hypotheses About the Ontogeny of Shape in Terms of Size Variables

Both the clock model and the Alberch et al. scheme framed the hypothesis of hetero-
chrony (and scaling) in terms of shape. Thus, to test the hypotheses using traditional
morphometric data, the hypotheses must be translated into expectations for size variables.
Sometimes this step is skipped, even intentionally, on the grounds that shape is merely a
derivative of size, making analysis of shape change just a comparison of relative sizes
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(McKinney, 1988; McKinney and McNamara, 1991). Skipping that translation step rede-
fines all the terms. For example, “neoteny” no longer means a decrease in developmental
rate. Instead it means a decrease in growth rate of any measurement regressed on size
(McKinney, 1986, 1988; McKinney and McNamara, 1991). To be consistent with Gould’s
and Alberch et al.’s definition of the term (as well as with much of the preceding litera-
ture), the hypothesis of neoteny must be translated as predicting that positively allometric
coefficients will decrease but negatively allometric coefficients will increase. If this seems
counterintuitive, consider what it means to be pedomorphic (i.e. “childlike”). A pedo-
morphic descendant resembles the ancestral juvenile. The extreme case would be an adult
that does not depart at all from the juvenile shape as it grows. For that to be the case,
growth must be isometric (shape does not change over ontogeny). In less extreme cases,
the descendant’s ontogeny is more nearly isometric than the ancestor’s. Based on that rea-
soning, positively allometric coefficients will decrease in slope, in the direction of isometry,
and negatively allometric coefficients will increase in slope, also in the direction of isome-
try. Positively and negatively allometric coefficients approach isometry from opposing
directions. Of course, the coefficients must all change by the appropriate amount, not just
in the appropriate direction.

Considering that pedomorphosis results from truncating the ancestral ontogeny, and
peramorphosis from extending it, we would anticipate that the vectors of allometric coeffi-
cients would point in the same direction � the two vectors differ only by an extension or
truncation, and thus in length, not in direction. From geometry, it should be obvious that
when the regression vectors actually are the same line, they point in the same direction
and therefore the angle between them is 0�. Because the correlation between the two vec-
tors is the cosine of the angle, many studies have measured the correlation between the
vectors to determine if they differ by much. They often are very highly correlated, for
example, in the case of sigmodontine rodents, the correlation between the ontogenetic tra-
jectories of post-weaning trajectories are, on average 0.981 in comparisons between conge-
neric species and 0.962 in comparisons between genera, corresponding to angles of 11.2�

and 15.84� (Voss and Marcus, 1992). Similarly, comparisons between pygmy chimpanzee
(Pan paniscus), common chimpanzee (Pan troglodytes) and the gorilla (Gorilla gorilla) yield
correlations that range from 0.964 to 0.977, corresponding to angles from 12.31� to 15.42�.
When angles are that small, testing them for a significant deviation from 0� may not seem
necessary, and they typically were not tested. However, it is worth examining even such
obviously interpretable results with a jaundiced eye because explicit statistical testing can
yield surprising outcomes.

Calculating the Angle Between Two Vectors

The angle between any two vectors A and B, each with P components, may be com-
puted by taking the dot product (also called the “inner product”) of the two vectors. The
dot product is calculated by multiplying the corresponding components of the two vectors
together, then summing those products. For example, if we have two vectors, A and B,
with A5 [A1, A2, A3,...AP] and B5 [B1, B2, B3,...BP], the dot product is:

A �B5A1B1 1A2B2 1A3B3 1 . . .APBP (11.5)
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To use the dot product to calculate the angle between two vectors of size variables, we
would first estimate the regression coefficients for each one, then normalize the vectors to
unit length (meaning that the square root of their summed squared coefficients equals one).
To calculate the angle for shape variables, we would similarly first estimate the regression
coefficients for each such component, such as regression coefficients for coordinates
obtained by GPA or partial warp scores. We then calculate the dot product by multiplying
the allometric coefficient of one species by the allometric coefficient of that same variable in
the other, then multiply the coefficient of the next variable in one species by the allometric
coefficient of that same variable in another, and so for all coefficients. Finally, we would
sum all those products. This gives the correlation between the vectors (Rv). Because a corre-
lation is a cosine of an angle, we can also write the equation for the dot product as:

A �B5 jAjjBjcos θ (11.6)

where jAj is the magnitude (length) of A, which is calculated by (A1
21A2

2 1...AP
2)1/2 and

similarly, jBj is the length of B, calculated by (B1
21B2

2 1 ...BP
2)1/2, and θ is the angle

between them.
If A and B are unit vectors, the two lengths jAj and jBj are both one, so, to find the

angle between the two vectors we solve for θ by:

θ5 arccosðA �BÞ=ððjAjjBjÞÞ (11.7)

When two vectors are parallel, the angle between them is 0� and the vector correlation
between them is 1.0; in contrast, when two vectors point in exactly the opposite direction
(which is termed being anti-parallel), the angle between them is 180� and the vector corre-
lation between them is 21.0. The angle between perpendicular (orthogonal) vectors is 90�,
and the correlation between them is 0.0.

Testing the Statistical Significance of the Angle

Once we have computed an angle between two regression vectors, we are left with the
question of whether it is statistically significant. Rather than attempt to find an analytic test
of significance, we can rely on a bootstrap or permutation procedure (see Chapter 8 for an
overview of resampling methods and bootstrapping, and Chapter 9 for a more detailed dis-
cussion of permutation tests). Using bootstrapping, we can determine a confidence interval
for the range of angles between regression vectors that can be produced by random varia-
tion within each group. At issue is whether the uncertainty of our estimate of each vector
(due to sampling) is so large that we cannot reject the null hypothesis of no difference.

To estimate the range of angles within each species, we estimate the residuals from the
regression of shape on the independent variable. Each individual gives a multidimensional
set of residuals that describe the deviation of that individual from its expected shape. We
then form a pair of bootstrap sets for each group that will be used to calculate the angle
between the vectors. These pairs are constructed by resampling the residuals (with replace-
ment) and randomly assigning them to expected values of shape (derived from the original
regression model) at the values of size observed in the original data. This procedure pre-
serves the covariance structure among variables and is a multivariate extension of the stan-
dard approach to estimation of uncertainties of regression slopes by resampling.
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From the paired samples, we calculate the angles between the vectors, reiterating
this procedure to generate a distribution of within-group angles. Because sample sizes
can differ for different groups, the two bootstrap sets formed from the group with the
larger sample size match the sample sizes of the two groups (i.e. one of the bootstrap
sets will have a sample size equal to that of the group with more observations and one
will have the sample size equal to that of the group with fewer observations). Both boot-
strap sets formed from the data of the group with the smaller sample size have that
group’s smaller sample size because we ought not form bootstrap sets larger than the
original data set. We then determine the statistical significance of the inter-group angle
by comparing it to the 95th percentile of the range of both within-group angles. Should
it be larger, the inter-group difference is judged to be statistically significant at a 5%
level.

We can also use a permutation test to determine whether the difference between the
trajectories is greater than expected by chance (Adams and Collyer, 2009). One approach
is to use the residuals from the reduced model, which includes two factors “species” and
“size” (or “age”) but not the interaction term “species3 size” (or “species3 age”). The rea-
son for using the residuals from the reduced model is to hold constant the relationship
between shape and size (age) within each species. The residuals are then randomly
assigned to the species and the randomized residuals are added to the predicted values.
The full model is then used to calculate the predicted values from the random data.
Repeating that procedure numerous times yields the empirical null distribution. The
p-value is determined by the proportion of values that are as extreme or more extreme
than the observed value.

We might also want to know if two species are no more similar than expected
by chance. To test this null hypothesis, we can randomly permute the coefficients of the
allometric vectors and compute the mean correlation between random vectors and
the 95% and 97.5% confidence intervals. If the observed correlation is higher than 97.5% of
the correlations obtained by randomly permuting the coefficients, then the observed corre-
lation is higher than expected by chance.

ATraditional Approach to Estimating the Contribution of Scaling Makes to
Morphological Variation

If the null hypothesis of no difference between trajectories is rejected, we might still
want to know whether heterochrony or scaling is the dominant cause of disparity � the
two trajectories might not be identical but the difference between them might be slight
and have very little impact on the evolution of morphology. We would also like a method
for assessing the degree to which scaling accounts for the variation in morphology. One
widely used method is to conduct a PCA of the pooled ontogenies series, i.e. a multigroup
PCA (Shea, 1985). PC1 is expected to show ontogenetic scaling, or the shape variation
resulting from extension or truncation of shared allometry and PC2 and subsequent com-
ponents show differences between groups in allometric coefficients as well as differences
due to transpositions. The contribution that ontogenetic scaling (and the differential trun-
cation/extension of it) makes to the overall variation is then quantified by the eigenvalue
of the first component relative to subsequent ones (Shea, 1985).
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Examples: Applying These Methods to Data

We first compare the ontogenetic trajectories of the two piranha species (S. gouldingi
and S. manueli) and then those of the two rodent species, the cotton rat (S. fulviventer) and
house mouse (M. musculus domesticus) using traditional morphometric data. Next we
conduct both comparisons using geometric morphometric data.

The hypothesis of ontogenetic scaling predicts that species differ only in adult body
size, not in either juvenile shape (measured at the intercept, or at a comparable develop-
mental stage), or the direction of ontogenetic shape change. Given this hypothesis, we can
use MANCOVA (see Chapter 9) to test it. But MANCOVA presents a problem because the
substantive biological hypothesis (ontogenetic scaling) is equivalent to the statistical null.
Normally, the null is the hypothesis that we would like to reject, and we use various strat-
egies to ensure that we do not reject it too readily. But the hypothesis of scaling is the one
we wish to accept, so we are put in an odd position. Procedures that prevent rejecting a
false null hypothesis, such as using a very conservative test, and factors that can reduce
our ability to reject it, such as small sample size, can lead us to accept a false hypothesis of
scaling. Thus, the inference of ontogenetic scaling will not be convincing if the test is
conservative or the sample size is small. Presuming that the sample size is large enough to
reject a false null hypothesis, finding that only the covariate is a significant term supports
a hypothesis of ontogenetic scaling. In the analyses of both the two piranhas and the
two rodent species, we use MANOVA rather than MANCOVA because we are comparing
the mean shapes for each species at two developmental stages rather than using a continu-
ous factor (size) as a covariate. We find that both factors, plus the interaction term, are
highly significant statistically in the comparison of the two piranhas (Table 11.6).
Nevertheless, the angle between allometric vectors appears to be very small, 6.27�, which
corresponds to a very high correlation of 99.4. Nonetheless, using the bootstrapping proce-
dure described above, the within-species angles are just 1.5� and 2.0� so 6.27� is signifi-
cantly greater than 0.0� (P, 0.05). A permutation test similarly determines that the two
species differ significantly (at P, 0.001). Both factors, plus the interaction term, are also
highly significant statistically in the case of the two rodents (Table 11.7) but, again, the
correlation between the vectors is very high: 0.984, corresponding to an angle of just 10.4�.
Again, using the bootstrapping procedure to test the statistical significance of the angle
between vectors, we find that within-species angles are just 4.2� and 3.4� so the observed
angle of 10.4� is significantly greater than expected by chance. Thus, in both cases, the

TABLE 11.6 Two-way Multivariate Analysis of Variance (MANOVA) of Piranha Body Shape Between
Species (“Taxa”) and Developmental Stage (“Stage”)

Effect df Pillai’s Trace Approx F Num df Den df P

Taxa 1 0.99751 1642 30 123 ,0.0001

Size 1 1 1230192 30 123 ,0.0001

taxa:level 1 0.9971 1411 30 123 ,0.0001

Residuals 152
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pairs of species differ in their ontogenies, but based on the tiny angles, the differences
appear very small.

To determine whether scaling might be the dominant cause of morphological variation
we conduct a PCA of the covariance matrix of the log-transformed measurements and
compare the eigenvalues for the first two axes. In the case of the two piranhas, the eigen-
value of PC1 is 2.61; this axis accounts for 99.9%. For PC2, the eigenvalue is 0.010 and this
axis accounts for just 0.4% of the variance. Thus, ontogenetic scaling (and the differential
extension/truncation of ontogenetic allometry) appears to account for nearly all the varia-
tion in the data. This dominance of scaling is evident in the plot of the PC scores for the
two species (Figure 11.13). We obtain a similar result for the two rodents. The eigenvalue
of PC1 is 0.915; this axis accounts for 95.5% of the variation in the data. For PC2, the eigen-
value is 0.017 and this axis accounts for merely 1.8% of the variance. Thus, PC1 accounts
for an overwhelming proportion of the variance. As evident from the plot, the older house
mice overlap the neonatal cotton rats along PC1, due to the enormous size difference
between the species (Figure 11.14) and the two species are separated along PC2. The onto-
genetic trajectories are slightly oblique to PC1, suggesting that the two species differ in
allometries and not just by a consistent difference in shape (a consistent difference would
be perpendicular to PC1). Thus, for both species, we could conclude that the data are
explained well by a hypothesis of ontogenetic scaling even though the ontogenetic trajecto-
ries are not strictly the same.

Repeating these same analyses using geometric data, we obtain strikingly different
results. In the comparison of ontogenetic trajectories between the two piranhas we obtain an
angle of 34.9�, corresponding to a correlation of 0.819. The angle is large relative to those
obtained by resampling (11.0�, 16.6�). A permutation test similarly determines that the spe-
cies differ significantly (P, 0.001). The statistical result agrees with what we obtained from
the traditional morphometric data, but an angle of 35.0� is not small. Analysis of the two
rodent ontogenies yields an angle of 42.7� between the two species, corresponding to a cor-
relation of 0.74, which again are larger than those obtained by resampling within-species
(13.2�, 10.4�). A permutation test similarly determines that the species are more different
than expected by chance (P, 0.001). Again, the statistical result agrees with what we
obtained from the traditional morphometric data, but an angle of 42.7� is not small.

We can obtain further insight into the meaning of the angles by testing the other null
hypothesis, i.e. that the vectors are no more similar than expected by chance. For the com-
parison between the piranhas, the angles between randomly permuted vectors of

TABLE 11.7 Two-way Multivariate Analysis of Variance (MANOVA) of Rodent Craniofacial Shape
Between Species (“Taxa”) and Ages (“Age”)

Effect df Pillai’s Trace Approx F Num df Den df P

Taxa 1 0.97848 748.46 13 214 ,0.0001

Age 8 2.56727 8.03 104 1768 ,0.0001

taxa:level 4 1.06715 6.07 52 868 ,0.0001

Residuals 226
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allometric coefficients of traditional data average 0.981, corresponding to an angle of
11.13�. Thus, only correlations higher than 0.987 or angles smaller than 9.10� indicate any
greater similarity than expected by chance. The correlation obtained from the data is
indeed higher than 0.987, but that value of 0.994 no longer seems remarkably high. For the
two rodent species, the average correlation obtained by randomly permuting the allome-
tric coefficients of traditional data is 0.89, corresponding to an angle of 27�. So, in this case,
only correlations higher than 0.96, or angles smaller than 16.3�, indicate any greater
similarity than expected by chance. The observed correlation of 0.984 is higher than 0.96,
but again, 0.984 no longer appears to be impressive evidence of a conserved ontogeny.
In striking contrast, in analyses based on geometric data, the average correlation between
randomly permuted vectors is 20.002, corresponding to an angle of 89.9�; the value that
we would expect for randomly related vectors.

FIGURE 11.13 Principal components analysis of the traditional measurements, pooling the ontogenetic series
of S. gouldingi and S. manueli.

FIGURE 11.14 Principal components analysis of the traditional measurements, pooling the ontogenetic series
of cotton rat and house mouse.
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To understand why angles between random vectors of traditional data are so far from
90�, recall how allometric coefficients (k) are calculated as well as how the angles between
vectors are calculated. The coefficients are the power to which body size is raised in the
power law (Equation 11.1). As long as structures grow rather than shrink over ontogeny,
k is invariably a positive number. Moreover, the coefficients rarely differ by much � the
most extreme values for S. gouldingi are 0.75 (for eye diameter) and 1.23 (for mid-body
depth and posterodorsal head length). That difference may seem very large because one is
highly negatively allometric whereas the other is highly positively allometric, but the
difference is still numerically very small (in this case, it is less than 0.5). The angles are com-
puted by taking the dot product between the two vectors (after they are normalized to unit
length), which means that we multiply k1 of one species by k1 of the other, and add that to
the product of k2 in one species by k2 of the other, and so forth. We are therefore summing
products of corresponding allometric coefficients. Because all the elements of both vectors
are positive numbers, the sum of their products cannot be zero � much less negative. To
produce an angle of 90�, the sum would have to be zero (because the cosine of 90� is zero).
The angle is necessarily smaller than that � often very much smaller (as in the two compari-
sons, above). In striking contrast, allometric coefficients obtained from geometric data can
be negative as well as positive, the angle between random vectors is near 90.0�. Thus, results
from studies based on geometric data yield angles that are more easily interpreted in light
of our expectation that the angle between random vectors should be 90�.

Re-evaluating the Traditional Method for Estimating the Variation
Explained by Scaling

Given that ontogenetic scaling clearly does not explain either data set well, we need
to re-evaluate the inference that we drew from the PCA. When analyzing the traditional
morphometric data, we found that PC1 explained an overwhelming proportion of the
variation in piranhas and the rodents alike. Conducting a PCA of the geometric data for
the two piranhas (Figure 11.15), we again find that PC1 accounts for far more variance
than PC2 does: 64.81% versus 9.45%. The eigenvalue of PC1 is 0.0023 and that for PC2 is
0.00034 so PC1 clearly dominates. But the picture no longer suggests either ontogenetic
scaling or parallel trajectories. It even looks as if the ontogenetic trajectories of both species
bend. What we know from computing the two trajectories that each is linear, and we also
know from computing the angle between that the two vectors are at 34.9� to each other.
The picture shows neither the linearity nor the degree of divergence well. The multigroup
PCA (Figure 11.16) for the two rodents suggests that the two ontogenies are parallel except
that the ontogenetic trajectories are oblique to PC1 which, in this data set, is not the size or
age axis. PC1, which accounts for 53.61%, separates the two species at all ages. PC2, which
accounts for 27.88% of the variance, is aligned with the averaged ontogeny. What the
plot suggests is that the difference between the two species is not constant throughout
ontogeny, implying a divergence in growth allometries.

The most notable difference between the PCs derived from traditional and geometric
data is predictable � in analyses of geometric data, size no longer dominates the analysis.
Changes in shape related to size are preserved in data, but geometric scale is not and
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therefore the large ontogenetic increase in scale (and the differences between species in
scale) no longer contributes to PC1. The consequence is self-evident in the plots for the
two rodents � whereas PC1 is a size axis in the analysis based on traditional (size) data,
PC1 separates the two ontogenies in the analysis based on geometric data. In that geomet-
ric analysis, the averaged ontogeny is more nearly aligned with PC2, although oblique to
it. The eigenvalues of these axes cannot tell us which hypothesis is best supported nor
quantify the proportion of the disparity that results from each modification of ontogeny.
After all, PCA is an ordination method, not a statistical test of a hypothesis. In these plots,
we cannot even detect that the two trajectories are at 42.7� to each other. Principal compo-
nents analysis, whether of traditional or geometric data, is a low-dimensional projection of
complex data. The eigenvalues of the PCs tell us how much of the total variation projects
onto each axis, not how much each modification of ontogeny contributes to disparity.

DISSECTING THE DEVELOPMENTAL BASIS OF DISPARITY

Dissecting the developmental basis of disparity is obviously a complex task when there
are many modifications of ontogeny and many species. Not only do we need to identify
what differs among the ontogenies (and between which species they differ), but also we
need to determine the impact of those modifications on disparity. Numerous studies, using

FIGURE 11.15 Principal components analysis of geometric shape data, pooling the ontogenetic series of
S. gouldingi and S. manueli.
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traditional as well as geometric data have shown that species differ in shape at the outset
of development, the trajectories diverge and they may also differ in length (e.g. Strauss and
Fuiman, 1985; McKinney, 1986; Klingenberg and Froese, 1991; Zelditch et al., 2000, 2003a;
Cardini and Tongiorgi, 2003; Bastir and Rosas, 2004; Cobb and O’Higgins, 2004;
Mitteroecker et al., 2004a, 2004b; Larson, 2005; Cardini and Thorington, 2006; Bastir et al.,

FIGURE 11.16 Principal components analysis of geometric shape data, pooling the ontogenetic series of
cotton rat and house mouse.
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2007; Webster, 2007, 2009; Frederich et al., 2008; Sanfelice and De Freitas, 2008; Piras et al.,
2010; Drake, 2011; Frederich and Vandewalle, 2011). Relatively few, however, explicitly
compare levels of disparity at different ontogenetic stages. In one case, multiple modifica-
tions of ontogeny increase disparity (Frederich et al., 2008). In other cases, combinations of
modifications decrease disparity because disparate young develop along divergent trajecto-
ries towards similar adult morphologies (Zelditch et al., 2003b; Adams and Nistri, 2010;
Piras et al., 2010; Ivanovic et al., 2011). To dissect the developmental basis of disparity, we
need comparisons of the ontogenetic trajectories plus measures of disparity.

Testing Hypotheses About the Evolution of Ontogeny

To determine what differs between ontogenetic trajectories we need to conduct a series
of tests. How we progress through these tests depends on the results of each one.

What ontogenetic scaling would look like is shown for a hypothetical case in Figure 11.17.
In this case, the two species have the same shape at the outset of development, follow the
same ontogeny of shape but one grows to a larger size, with size and shape maintaining the
same relationship with each other that they had in the ancestral species. Thus, we see that
the coordinates of the juveniles completely overlap (Figure 11.17A), the two ontogenies of
shape are the same (Figure 11.17B), and the trajectories differ in length (Figure 11.17C). As a
result, the coordinates of the descendant’s adult morphology lie at a subadult position on the
ancestral ontogeny (Figure 11.17D). However, ontogenetic scaling is not the only hypothesis
consistent with these figures; with the exception of Figure 11.17A, the diagrams are also con-
sistent with another hypothesis � heterochrony more generally. That is because the two
hypotheses differ in only one respect � the association between size and shape. The hypoth-
esis of ontogenetic scaling predicts that size and shape are associated in their evolutionary
changes whereas the hypothesis of heterochrony predicts that they need not be. As a result,
we might not find that the two species are identical in shape at any given size. The ancestral
shape could be identical to that of the descendant at a different size. We would still find that
the trajectories point in the same direction, and the coordinates for one species would be
found at a subadult position for the other. But, in the case of ontogenetic scaling, the two
species have the same regression equation whereas in the case of heterochrony they do not.
We thus need to distinguish between identical regressions versus overlapping trajectories.

Mitteroecker and colleagues (2005) suggest two tests to make the distinction between those
two cases. The first involves computing the multivariate regression of shape on size for each
species (separately) and randomly assigning the summed squared residuals from the two
regressions to species, recomputing the regression numerous times. If the two trajectories are
identical, the test statistic for the observed case should not be an outlier in the distribution of
summed squared residuals for the permuted data. So, for N permutations, the hypothesis of
identical trajectories is rejected if (C1 1)/(N1 1),α, where C is the number of cases that pro-
duce a smaller test statistic than found for the data. For the case of overlapping trajectories,
the test involves using the residuals normal to the regression, ignoring deviations along the
trajectory (because the expectation is that the same shapes will be at different points along the
trajectories). So this test, which is otherwise the same as the first, uses the summed squared
distances from each shape to its nearest point on the regression curve rather than the summed
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squared residuals. Piras and colleagues (Piras et al., 2011) offer a modified version of these
tests, using the mean squared error rather than the sums of squares.

A third hypothesis, parallel trajectories, also predicts that the two trajectories point in
the same direction but, in this case, the two species never resemble each other. We would
therefore expect that they have different shapes at the youngest comparable stage
(Figure 11.18A), but subsequently follow the same ontogeny of shape (Figure 11.18B), per-
haps to the same extent (Figure 11.18C). To test the hypothesis that only early develop-
ment is labile, we can show that there is a significant difference in shape at the outset of
the measured phase, but the ontogenies of shape do not differ. For the hypothetical species

FIGURE 11.17 Ontogenetic
scaling and heterochrony. (A)
Superimposed coordinates of juve-
nile shapes; (B) ontogenies of
shape; (C) lengths of ontogenetic
vectors of shape. The two species
have the same shape at the outset
of the measured phase, follow the
same ontogeny of shape, but differ
in the length of their ontogenetic
vectors; the descendant has a trun-
cated version of the ancestral
ontogeny. (D) Superimposed coor-
dinates for showing the ontogenetic
transformation of ancestral shape
(black circles) and the descendant
adult shape (gray squares). The
descendant adult shape is at an
intermediate position along the
ancestral ontogeny.
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shown in Figure 11.18, the difference between their shapes at the transition from larval to
juvenile phases is highly significant (P, 0.0001) and the Procrustes distance between their
means is large: 0.1247. The contrast between the shapes is particularly striking in the
superimposed coordinates because we find little or no overlap between species in several
of them (Figure 11.18A). But, as anticipated, there is no significant difference in their onto-
genies of form; the angle between the two vectors is a tiny 1.9� (compared to the within-
species angles of 4.0� and 3.7�). And the lengths of the ontogenetic vectors are statistically
indistinguishable; the Procrustes distance between the youngest and oldest for one species
is 0.1999 and for the other it is 0.2040. Thus, all that differs between the two trajectories is
the shape at the outset of development. We can thus test for a difference between shapes
at the youngest comparable stage, a difference between the ontogenies of shape and a dif-
ference in length of the ontogenies. Piras and colleagues (Piras et al., 2011) suggest testing
the hypothesis of no transposition of the allometries, which is equivalent to a test of no dif-
ference in elevation of the parallel trajectories, using the distance between the predicted
intercept shapes, comparing that distance to a distribution of distances obtained by

FIGURE 11.18 Change confined to
early morphogenesis. (A) Superimposed
coordinates of juvenile shapes; (B) onto-
genies of shape; (C) lengths of ontoge-
netic vectors of shape. The two species
differ in shape at the outset of the mea-
sured phase, but subsequently follow
the same ontogeny of shape and do not
differ in the length of their ontogenetic
vectors.
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randomly permuting species affiliations of the data. Should the observed distance lie out-
side the 95th percentile for the random distribution of distances, the null hypothesis of no
difference in elevation is rejected.

The remaining hypotheses predict that ontogenetic trajectories diverge; what differs
among them is what else differs. Should all change be confined to late morphogenesis, we
would expect to see no difference between the shapes of the two species at the youngest
comparable developmental stage (Figure 11.19A), a difference in their ontogenies of shape
(Figure 11.19B) and no difference in length of the trajectories (Figure 11.19C). The remain-
ing hypotheses differ from this one in that they predict differences in either shape at the
outset of the comparable phase and/or length of the trajectories. They also differ in
whether the multiple changes lead to greater divergence in the adult shape(s) compared to
that between the youngest comparable age. Testing these hypotheses requires comparing
shapes at the youngest comparable age, comparing the directions of the ontogenetic trajec-
tories of shape, comparing the lengths of the trajectories and comparing the distances
between the youngest and oldest comparable stages. Comparisons between shapes at the

FIGURE 11.19 Change in the
spatiotemporal pattern of develop-
ment confined to late development.
(A) Superimposed coordinates of
juvenile shapes; (B) ontogenies of
shape; (C) lengths of ontogenetic
vectors of shape. The two species
have the same shape at the outset
of the measured phase, but subse-
quently follow different ontogenies
of shape; they do not differ in the
length of their ontogenetic vectors.
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youngest and oldest ages are most easily done by calculating the predicted shape for that
stage (from the regression equation) then adding the residuals around the regression line
to the predicted shape. The lengths of the trajectories can be calculated from the distance
between the predicted shapes at the youngest and oldest stages, and the comparison
between distances can be done by computing the distance between the shapes at the two
stages, testing the null hypothesis that the distances do not differ.

Example: Ontogeny of Shape and Disparity

In this example, we combine a comparative analysis of ontogeny with an analysis of shape
disparity, measured at two developmental stages � at the transition from larval to juvenile
growth and at maximum adult body size. We use the approach presented by Adams and
Collyer (2009) for the comparison of phenotypic trajectories. We begin with a Multivariate
Analysis of Variance (MANOVA, see Chapter 9). Just as we did in the analysis of traditional
morphometric data, in this one we use MANOVA rather than MANCOVA because we are
comparing the mean shapes for each species at two developmental stages rather than using a
continuous factor (size) as a covariate. We find that both factors, plus the interaction term, are
highly significant statistically (Table 11.8). The species all differ statistically significantly in
shape at the transition from larval to juvenile growth; some of the distances between species
are large (Table 11.9). All but two species differ in their ontogenetic trajectories of shape
(Table 11.10) and several (but not all) also differ in lengths of the trajectories (Table 11.11). The
trajectories for all nine species are shown in the space of the first two principal components
for body shape (Figure 11.20); this plot obviously cannot do justice to the complexity of these
data. Nevertheless, it does show that three species on the left side of the plot (S. manueli,
S. gouldingi and S. elongatus) have distinctive juvenile shapes and two of them, but not the
third (S. elongatus), develop in the direction of the other Serrasalmus.

To determine what impact that combination of modifications has on disparity, we will
compute the disparity of body shape at the transition from larval to juvenile development
and again at maximum adult size. To do this, we will estimate the predicted shape at the
two developmental stages and compute disparity of the means for each stage. Disparity is
calculated as the square root of the average of the squared distances from each species to
the mean of the distribution (see Chapter 10 for further discussion of measuring disparity).
To determine if the disparities of juveniles and adults differ significantly, we can repeat-
edly resample individuals within species and repeat the calculation of the predicted values

TABLE 11.8 Two-way Multivariate Analysis of Variance (MANOVA) of Piranha Body Shape Across Species
(“Taxa”) and Developmental Stage (“Stage”)

Effect Df Pillai’s Trace Approx F Num Df Den Df P

Taxa 8 5.461 49.60 256 5904 ,2.2e�16

Stage 1 0.99 2343.08 32 731 ,2.2e�16

Taxa:Stage 8 5.04 39.26 256 5904 ,2.2e�16

Residuals 762

338 11. EVOLUTIONARY DEVELOPMENTAL BIOLOGY (1): THE EVOLUTION OF ONTOGENY

3. APPLICATIONS



and disparity and compute the difference between the juvenile and adult disparities,
repeating this calculation numerous times to generate the distribution of the difference in
disparities between the two stages. If zero does not lie within the confidence interval of
the difference in disparities, the two disparities differ significantly from each other. The
disparity for juveniles is 0.00543 and for adults it is 0.00398 and the confidence intervals
for these values do not even overlap (Zelditch et al., 2003b).

The comparison of the disparities at the two developmental stages gives an estimate of
the overall level of disparity but it does not tell us how much each modification of

TABLE 11.9 Comparing Angles Between Ontogenetic Trajectories

dent alt el gould man spilo pir nat car

dent 0 44.89 38.59 32.99 46.04 37.15 58.99 70.26 48.68

alt 0.001 0 39.11 31.97 30.80 35.22 63.74 65.67 41.83

el 0.001 0.001 0 38.39 45.73 26.31 48.19 54.57 33.06

gould 0.001 0.001 0.001 0 34.80 38.07 64.89 67.98 47.78

man 0.001 0.001 0.001 0.001 0 44.97 73.41 76.31 55.59

spilo 0.001 0.001 0.001 0.001 0.001 0 51.44 56.80 34.10

pir 0.001 0.001 0.001 0.001 0.001 0.001 0 22.70 40.30

nat 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0 39.30

car 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0

Angles between trajectories are given above the diagonal; p-values for the null hypothesis that the angle is no greater than 0� obtained
by permutation of residuals are given below the diagonal. dent5Pygopristis denticulate; alt5 Serrasalmus altuvei; el5 S. elongatus;
gould5 S. gouldingi; man5 S.manueli; spilo5S. spilopleura; pir5Pygocentrus piraya; nat5P. nattereri; car5P. cariba.

TABLE 11.10 Procrustes Distances Between Juvenile Shapes

dent alt el gould man spilo pir nat car

dent 0 0.079 0.012 0.138 0.134 0.065 0.069 0.064 0.052

alt 0 0.107 0.126 0.107 0.064 0.094 0.088 0.085

el 0 0.060 0.071 0.120 0.152 0.143 0.127

gould 0 0.08 0.138 0.165 0.160 0.145

man 0 0.122 0.156 0.151 0.131

spilo 0 0.060 0.058 0.053

pir 0 0.033 0.038

nat 0 0.044

car 0

All differences between shapes are statistically significant, adjusting for the multiple comparisons. dent5Pygopristis denticulate;
alt5 Serrasalmus altuvei; el5 S. elongatus; gould5 S. gouldingi; man5 S. manueli; spilo5 S. spilopleura; pir5Pygocentrus piraya;
nat5P. nattereri; car5P. cariba.
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TABLE 11.11 Differences in Lengths of Ontogenetic Trajectories Above the Diagonal

dent alt el gould man spilo car nat pir

dent 0.000 0.020 0.010 0.108 0.085 0.014 0.026 0.001 0.013

alt 0.007 0.000 0.030 0.088 0.065 0.034 0.046 0.021 0.033

el 0.132 0.001 0.000 0.118 0.095 0.004 0.016 0.009 0.003

gould 0.001 0.001 0.001 0.000 0.023 0.122 0.134 0.109 0.121

man 0.001 0.001 0.001 0.001 0.000 0.099 0.111 0.086 0.098

spilo 0.037 0.001 0.580 0.001 0.001 0.000 0.012 0.013 0.001

car 0.001 0.001 0.030 0.001 0.001 0.081 0.000 0.025 0.013

nat 0.836 0.001 0.096 0.001 0.001 0.012 0.001 0.000 0.012

pir 0.071 0.001 0.647 0.001 0.001 0.911 0.093 0.058 0.000

p-values for the null hypothesis that the lengths do not differ obtained by permutation of the residuals below the diagonal.

dent5Pygopristis denticulate; alt5 Serrasalmus altuvei; el5 S. elongatus; gould5 S. gouldingi; man5 S. manueli; spilo5 S. spilopleura;
pir5Pygocentrus piraya; nat5P. nattereri; car5P. cariba.

FIGURE 11.20 The
ontogenetic trajectories of
shape for the nine species
of piranhas, in the space of
the first two principal com-
ponents of shape. The vec-
tors connect each species’
juvenile shape to its adult
shape.
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ontogeny contributes to disparity. What we need is a quantity similar to a partial dispar-
ity, but one that is the partial disparity for each modification rather than for each taxon.
But the partial disparities for taxa are additive � the contribution that each one makes to
the total disparity sum to the total disparity. In contrast, the contribution that each modifi-
cation of ontogeny makes to the total need not sum to the total. Two or more modifica-
tions, taken separately, can produce more disparity than the two do taken together.

To quantify the disparity due to each modification, taken individually, we can either fix
all but that one parameter of the trajectory, or we can fix only that one and allow the others
to vary. To fix a parameter, we assign the same value to both species; the one that is free to
vary has the values observed in the data. We first look at a simple case � the comparison
between S. gouldingi and S. manueli. Figure 11.21A shows the disparity of adults, first for the
data, then that produced by fixing all but one parameter. We can therefore compare the
disparity produced by variation in juvenile shape, length and direction to that produced
by varying only juvenile shape or length or direction. Regardless of which one varies, the
disparity of adults is far higher than seen in the data, especially if length or direction varies.
Figure 11.21B shows the disparity of adults when two parameters vary. Again, fixing any
one parameter increases disparity over that observed in the data. The greatest increase is
found when the juvenile shape is fixed and length and direction vary.

The analysis of all nine species is more complex because we could fix the parameters for
any combination of species and fix them to any of a variety of values. In this case, we will

FIGURE 11.21 The impact of variation in onto-
genetic trajectories on the difference in shape of
adult S. gouldingi and S. manueli. (A) The disparity
observed in the data (“Data”) is compared to that
obtained by variation in only juvenile shape
(“Juvenile”) or length of the ontogenetic trajectory
(“Length”) or direction of the ontogenetic trajectory
(“Direction”); (B) the disparity observed in the data
is compared to that obtained by variation in both
juvenile shape and the direction of the trajectory
(“Juv1Direction”), juvenile shape plus the length
of the trajectory (“Juv1Length”) or length and
direction of the trajectory (“Length1Direction”).
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focus on the three with the distinctive juvenile body shapes and fix their juvenile shapes,
trajectory lengths or directions either to that seen in the outgroup species (Pygopristis denticu-
lata) or to the value seen in the data for one of these three species. We will let length be the
sole parameter that varies, but the result of that variation clearly depends heavily on the
particular value to which the juvenile shape or direction is fixed (Figure 11.22). The lowest
values are found when fixing both juvenile shape and direction in the three shallow-bodied
species to the values observed in either S. gouldingi or S. manueli (both of which have rela-
tively long ontogenetic trajectories). The greatest disparity results from fixing the juvenile
shape of the three shallow-bodied juvenile species to the one seen in P. denticulata, fixing
trajectory length to the large value seen in S. gouldingi, and letting each species follow the
direction of its own trajectory (Zelditch et al., 2003b).

Clearly, even when we can dissect the developmental origins of disparity and quantify
the variation in morphology that arises from each modification of ontogeny, it is not
straightforward to answer the question: How much of the disparity arises from variation
in any one parameter? The interactions between them complicate answering that question
because the disparity produced by variation in any one parameter may be countered by
that produced by variation in another.

AGE-BASED COMPARISONS OF GROWTH AND DEVELOPMENTAL
RATES AND TIMINGS

Even after ruling out the hypothesis of heterochrony by finding that species follow differ-
ent ontogenetic trajectories of shape we may still be interested in their rates and timings of
growth and development. Because the species do not follow the same ontogenetic trajectories
of shape, we cannot use the Alberch et al. formalism to compare rates and timings � the

FIGURE 11.22 The impact of variation in attributes of ontogenetic trajectories on the disparity of the nine spe-
cies of piranhas. Levels of disparity are indicated by the height of the bar. The level observed in the data (D) is
compared to disparity produced by fixing juvenile shape and the direction of the ontogenetic trajectory of shape
two attributes to be equal across the three species with shallow-bodied juveniles (S. gouldingi, S. manueli and
S. elongatus). Thus only the length of the ontogenetic trajectory varies. The values for juvenile shape and the
direction of the ontogenetic trajectory of shape are fixed to four values, values observed for P. denticulata (d),
S. elongatus (e), S. gouldingi (g), or S. manueli (m).
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formalism requires that the same shapes appear in the ontogenies of all species being com-
pared, just at different ages/sizes. So we need an alternative formalism that can be used
when species follow species-specific ontogenetic trajectories. Gould (1977; pp. 385�388) sug-
gested one such alternative, which is to compare the rates and timings at which species depart
from their own juvenile forms, an approach similar to that used by Hingst-Zaher and collea-
gues (Hingst-Zaher et al., 2000), who measured the amount of shape change from age to age
by the Procrustes distance between successive ages. They showed that the distance declines
with age, meaning that the rate of development (like that of growth) decreases over time. To
linearize the relationship between size and age, they regressed size on log(age 11) and the
same transformation can be used to examine the relationship between development and age
(Figure 11.23). By linearizing the relationship between shape and age, we can compare the
developmental rates, which are 0.061 for the house mouse and 0.044 for the cotton rat.

FIGURE 11.23 A linear regression of the Procrustes distance between each specimen and the mean of the
youngest age class on log (age11). (A) House mice; (B) cotton rats.
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An alternative method for analyzing rates of growth and development is to use non-
linear models, which have been widely applied to studies of growth. One class of models
is called “sigmoidal” because the curve is S-shaped (Figure 11.24). There are several
growth models, including the monomolecular (Gaillard et al., 1997), von Bertalanffy and
Gompertz ((Zullinger et al., 1884) and Fiorello and German (Fiorello and German, 1997).
Relative fit of competing models can be assessed by the Aikake Information Criterion
(AIC) which is a function of the log-likelihood of the parameters given the data and the
number of parameters in the model (Akaike, 1974). The AIC is calculated as:

AIC5 2k2 2 lnðlikelihoodÞÞ (11.8)

where k is the number of parameters in the model. The number of parameters is important
because simple models will generally have lower likelihoods than more complex ones.
The AIC effectively balances likelihood with model complexity, although the derivation of the
AIC is based on information measures rather than a concept of balancing. To compare models,
we can compute the difference in their AIC (ΔAIC) or estimate the AIC weight. AIC weight is
an estimate of the relative probability that a particular model is true, and is computed as:

AIC Weight5 expð20:5 �ΔAICÞ (11.9)

So if we have two models, one with an AIC of24 and another with an AIC of22, ΔAIC
for the second model is222 (24)5 2, and the AIC weight of that model is exp(20.5 * 2) or
0.368, meaning that it is 0.368 as likely as the first. But whether the best fitting model fits
well is also important because we would not want to choose the best of several poorly fit-
ting models. Additionally, we would not pick a model that yields significant serial autocor-
relations between residuals from the model even if it has the highest AIC weight. Although
the data from growth series are serially autocorrelated, the residuals from the model should
not be. Correlated residuals mean that the data violate the assumptions of the model � there
is a mismatch between data and model. Thus, to decide if any model fits well, we can first
look at the variance explained, then at the serial autocorrelation of residuals, and then, look-
ing only at the models that have not been ruled out due to significant autocorrelation of resi-
duals, we can choose the one that has the lowest AIC (or, equivalently, highest AIC weight).

Having chosen the model, and estimated its parameters, we can then predict Procrustes
distance at any developmental age. For example, the monomolecular model is:

DðtÞ5Af12 ekðt02tÞg (11.10)

FIGURE 11.24 A sigmodial (logistic) growth curve.
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where A is the asymptotic value for D, K is the rate of approach to the asymptotic value
and t0 is the age at the onset of development. We can therefore predict the value for D at
any age and also predict the degree of developmental maturity, measured as the propor-
tion of the asymptotic adult value attained at that age. For example, we can predict the
degree of maturity attained by the house mouse and cotton rat at birth, eye-opening,
weaning and sexual maturity. House mice are altricial, being blind, deaf, hairless and
immobile at birth; eye-opening occurs at around 10 days. In contrast, the cotton rat is pre-
cocial, opening its eyes the day it is born, its ears shortly thereafter, being furred and
mobile at birth. The two species differ in gestation length by 12 days (Zelditch et al.,
2003a), which could explain their difference in degree of maturity at birth. But the cotton
rat is not consistently 12 days more advanced than the house mouse. The two species
wean and become sexually mature at nearly the same ages. As we can infer from the rates
of shape maturation obtained from the linear model (above), the house mouse develops
more rapidly. But non-linear growth models may give a better estimate of developmental
rate.

Fitting the multiple growth models to the data shows that several models fit well
(Table 11.12). The logistic model corresponds to the one that we fit above, by regressing D
on log(age1 1); but this yields significant autocorrelated residuals for the house mouse so

TABLE 11.12 Evaluating Relative Fit of Growth Models to the Data for Developmental Maturity, Measured
as the Procrustes Distance Between Each Specimen and the Mean for the Youngest Age

Species Model %Var AC AIC Weight

House mouse Chapman-Richards 0.88 ns 0.1171

Monomolecular 0.88 ns 0.3077

von Bertalanffy 0.87 * –

Gompertz 0.86 * –

German Gompertz 0.87 ns 0.2976

Logistic 0.87 * –

Quadratic 0.86 ns 0.2776

Linear 0.78 * –

Cotton rat Chapman-Richards 0.90 ns 0.0615

Monomolecular 0.90 ns 0.1654

von Bertalanffy 0.90 ns 0.1628

Gompertz 0.88 ns 0.1379

German Gompertz 0.90 ns 0.1611

Logistic 0.89 ns 0.1554

Quadratic 0.89 ns 0.1559

Linear 0.83 * –

% Var5 variance explained; AC5 serial autocorrelation of residuals (statistical significance indicated by *).
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we would not further consider it. The one that fits best is the monomolecular (Equation
11.10 above). So we can use the estimated values for K, A and t0 to predict D at any age.
We can also determine relative maturity by dividing the value of D at each age by A
(which is the value of D at 100% of maturity). For the comparison between house mouse
and cotton rat, we can then assess their degree of maturity at several life-history mile-
stones (Figure 11.25).

DISPARITY OF ONTOGENY

As well as analyzing the disparity of shape, we can also analyze the disparity of the
ontogenetic trajectories. We do this by computing the vector of allometric coefficients for
each species; each vector is then entered as a row in the data matrix, i.e. the first column
of the data matrix is the allometric coefficient for the first shape variable, e.g. the x-coordi-
nate of landmark 1, or the x-component of partial warp 1 and the second column is the
allometric coefficient for the next variable, etc. The second row contains the allometric vec-
tor for the next species and so forth. Recall that correlation between the vectors is the sum
of the products of the corresponding coefficients; the patterns of variation among

FIGURE 11.25 The degree of maturity
shape (measured as the proportion of the
asymptotic adult value attained at each age)
against life-history milestones for the house
mouse and cotton rat.

FIGURE 11.26 Allometric disparity: principal compo-
nents of variation of ontogenetic trajectories.
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allometric vectors can be analyzed by the principal components of the covariance matrix
of these vectors, giving the orthogonal components of variation among allometric patterns
(Klingenberg and Froese, 1991). This space has been termed an “allometric space” (Gerber
et al., 2008, 2011; Wilson and Sanchez-Villagra, 2010) or “developmental morphospace”
(Eble, 2003; Gerber et al., 2008, 2011; Gerber, 2011) and the analysis of disparity within this
space has been termed “allometric disparity” (Gerber et al., 2008, 2011; Wilson and
Sanchez-Villagra, 2010). Not surprisingly, in the analysis of allometric disparity of the nine
species of piranhas (Figure 11.26) PC1, which explains 52.5% of the variation, shows that
two Pygocentrus are distinctive in their allometries. These are the species whose ontoge-
netic trajectories are typically at 60� or more to the others.
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12

Evolutionary Developmental
Biology (2): Variational Properties

This chapter discusses methods for analyzing variational properties, including pheno-
typic plasticity, canalization, developmental stability, morphological integration and the
related property of modularity. What all of them have in common is that they determine
by how much, and in what combinations of traits, phenotypes can vary. We emphasize can
vary rather than do vary, for two reasons. First, phenotypes can vary in more than they
do � each phenotype is a single instance of what a genotype can produce and each popu-
lation is a single case of the phenotypes that could be produced by that population’s geno-
types. Second, the variation within a population depends not only on the (intrinsic)
variational properties of the genotypes � it also depends on the processes that determine
the mix of genotypes within a population as well as on the environments they encounter
during development. A population could be nearly invariant phenotypically for a variety
of reasons, including that it is genetically homogeneous, that the environment is uniform,
or that deviants die young. None of these are attributes of the genotypes within the popu-
lation � none will travel with the individuals or be transmitted to their offspring. But a
population could be nearly invariant because of developmental mechanisms that suppress
the expression of variation. These mechanisms can travel with the individual and can be
transmitted to its offspring. The distinction between the observed, realized variation
within a population and the variation that could be produced motivates the distinction
between “variation”, i.e. the realized, observable variation in a population; and “variabil-
ity”, i.e. the propensity to vary (Wagner and Altenberg, 1996). Although we cannot
directly observe propensities, the distinction between variation and variability is nonethe-
less useful because it highlights the difference between population-genetic processes that
determine the mix of genotypes within a population and the intrinsic-developmental
mechanisms that regulate the expression of (co)variation.

The variational properties are all conceptually related to each other. All of them can be
regarded as attributes of the genotype�phenotype map, which provides a unifying theme
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linking them all (Wagner and Altenberg, 1996). But how they are related biologically has
been a matter of considerable controversy, especially when it comes to the relationships
between the various forms of canalization (i.e. macroenvironmental, microenvironmental,
and genetic canalization and developmental stability, which could be considered canaliza-
tion against developmental noise). Less often debated, perhaps because less often dis-
cussed, is the relationship between properties that regulate the expression of variation and
those that structure covariation. The processes regulating variation include all those listed
above as various forms of canalization and those that structure covariation include
morphological integration and modularity. They are obviously linked in the sense that
covariation requires processes that induce variation, but they are now often linked
methodologically because studies that examine the relationship between canalization and
developmental stability now often compare covariance matrices, one representing the (co)
variation among individuals, the other representing the (co)variation due to developmental
noise. Thus, patterns of covariation are analyzed for insight into the processes that suppress
variance and responses to noise. Additionally, the role that developmental modularity plays
in structuring morphological integration is now often analyzed by comparing those same
two covariance matrices.

There are, however, two important distinctions between studying the processes regulat-
ing variation (plasticity, canalization and developmental stability) on the one hand and
those structuring covariation (integration and modularity) on the other. The two distinc-
tions are related to each other because one concerns what needs to be measured, the other
concerns how it is measured. Studies of plasticity, canalization and developmental stability
assess the impact of various factors (either environmental or genetic) on the expression of
phenotype variation. We know how to measure and decompose variation, and the techni-
ques traditionally used to analyze plasticity, canalization and developmental stability are
readily adapted to geometric morphometrics. Conducting the analyses is far from easy
because the logistics of the experiments can be daunting, and the statistical models can be
remarkably complex. But the analyses are all based on sums of squares. Morphological
integration and modularity present more severe technical challenges because the concept
that has been central to them, that of a “trait”, has no obvious analog in geometric mor-
phometrics. An additional problem is that the Procrustes superimposition itself imposes a
pattern of covariances on the data (Rice, 1989; Rohlf and Slice, 1990; Rohlf, 2003; Adams
et al., 2004). For both those reasons, adapting geometric methods to the study of integra-
tion and modularity did not prove straightforward. Recent progress has led to several
new methods that replace the idea of “a trait” with “a subset of landmarks” (Klingenberg
et al., 2003, 2004; Monteiro et al., 2005; Marquez, 2008; Klingenberg, 2009). But methods for
studying integration and modularity are not as mature and well understood as those for
studying plasticity, canalization and developmental plasticity.

This chapter is organized primarily by subject matter rather than by methods. We
first discuss methods for analyzing plasticity, then canalization and then developmental
stability, and conclude the first section of this chapter by discussing methods for testing
hypotheses about the relationship among these three properties. We then present three
methods for analyzing morphological integration and modularity, all of which are well
grounded in geometric morphometric theory and implemented in freely available
software.
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PHENOTYPIC PLASTICITY: QUANTIFYING NORMS OF REACTION

The central concept in studies of phenotypic plasticity is the norm of reaction
(Wolterek, 1909; Schmalhausen, 1949), which is the array of phenotypes produced by a
given genotype reared in different environments. To determine the norm of reaction of a
genotype we might, for example, split the offspring of highly inbred rats into two groups,
feeding one the standard laboratory diet and the other a protein deficient diet. After letting
these two groups grow to adulthood, we could then weigh them and measure their skulls
to determine if body weight and/or skull size is responsive to protein deficiency.
The norm of reactions for weight and skull size could then be represented by plotting the
independent variable (diet in this case) on the x-axis and the phenotypic variable on
the y-axis (Figure 12.1). Figure 12.1A shows a case in which the treatment has no effect �
the phenotype is invariant across the two environments. This is what we would see if
protein deficiency had no impact on the weight or skeletal size. Figure 12.1B shows the
alternative � the phenotype does differ across the two environments. This is what we
would see if protein deficiency has an impact on weight or skeletal size. In the statistical
analysis of plasticity, the null hypothesis is that the treatment has no effect, a hypothesis
tested by Analysis of Variance (ANOVA, see Chapter 8, and for more complex designs,
see General Linear Models, Chapter 9).

Extending the analysis to two or more genotypes is reasonably straightforward because
we simply add a factor (genotype) to the statistical model and test the interaction term,
genotype3 environment. Several of the possible norms of reaction are shown in
Figure 12.2. One shows that the phenotypes of the two genotypes differ, but both are
invariant across the range of environments (Figure 12.2A). In this case, only genotype has
a significant effect on phenotype. The second possibility is that both genotypes exhibit
plasticity, to the same degree and in the same direction, making their norms of reaction
parallel (Figure 12.2B). In this case, the statistical analysis would reveal that both genotype
and environment have significant effects but the interaction term would not be significant
because the impact of the environment does not depend on genotype. A third possibility
is that one genotype exhibits plasticity but the other one does not (Figure 12.2C). In this

FIGURE 12.1 Norms of reaction for a single genotype reared in two environments. The environmental factor
is plotted on the x-axis, the phenotype on the y-axis. (A) The phenotype does not differ across the two environ-
ments. (B) The phenotype differs across the two environments.
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case, both factors and the interaction term would be statistically significant as well because
the impact of the environment depends on the genotype. We would also see a significant
interaction term if both genotypes exhibit plasticity but to varying degrees or in different
directions. A fourth possibility is that both genotypes exhibit plasticity but in contrasting
directions � their norms of reaction cross each other (Figure 12.2D). In this instance, the
statistical analysis would reveal no impact of either genotype or environment because the
lines here cross at the mean, but the interaction term would be significant. When there are
more than two genotypes or environments, the analysis of all groups is usually supple-
mented by pairwise comparisons to determine which means differ from which (and by
how much).

Norms of reaction are more difficult to depict for multivariate data because those norms
of reaction no longer describe a change in a single dimension. When the phenotype has
only one dimension, its value on that dimension can only increase or decrease so every
phenotype can be plotted on the same phenotype axis. But when the phenotype is

FIGURE 12.2 Norms of reaction for two genotypes reared in two environments. The environmental factor is
plotted on the x-axis, the phenotype on the y-axis. (A) The phenotypes of the two genotypes reared in the same
environment differ; both are invariant across the range of environments. (B) The phenotypes of the two genotypes
reared in the same environment differ; both respond to the environment to the same degree and in the same
direction; the norms of reaction are parallel. (C) The phenotypes of the two genotypes reared in the same environ-
ment differ and one responds to the environment of rearing whereas the other does not. (D) The phenotypes of
the two genotypes reared in the same environment differ; both respond to the environment but in contrasting
directions so that their norms of reaction cross.
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multidimensional, we might not be able to depict the array of phenotypes produced by
two genotypes in two environments. Those four shapes might not lie within a plane. It can
therefore be difficult to depict norms of reaction (a subject we return to below), but for
now we will project them onto a plane and show the endpoint of each vector as a shape in
a two-dimensional space (Figure 12.3). Figure 12.3 shows two genotypes in two environ-
ments. In the first case, the two genotypes differ in their phenotypes but neither alters its
phenotype in response to the environmental factor (Figure 12.3A). In the second case, both
genotypes alter their phenotypes in response to the environmental factor, in parallel direc-
tions (Figure 12.3B). In the third case, one genotype exhibits a large response and the other
does not (Figure 12.3C). In the fourth case, both genotypes exhibit a large response but in
different directions (Figure 12.3D). What complicates the statistical analysis, which might
otherwise be straightforward, is that a significant interaction term could mean that the
genotypes differ solely in the magnitude of their response or that they differ solely in
the direction of that response or that they differ in both. We therefore need to compare the
phenotypic trajectories of plasticity or, as Adams and Collyer (2009) term them, pheno-
typic change vectors. Methods for comparing lengths and directions of ontogenetic trajec-
tories were discussed at length in Chapter 11 and these are the same methods that we use
to compare phenotypic trajectories, in general.

Studies of plasticity often use complex designs, measuring multiple replicates of each
sampling as well as several such units responding to several environmental factors. These
complex, multilevel designs make it possible to measure the overall plasticity of a geno-
type, or of a population or of even higher-level units (e.g. ecotypes, species) over an array
of environmental factors. Overall plasticity would be measured by the variation of a given
genotype over the array of environmental factors. In Figure 12.4, Genotype A varies little
in response to all the environmental variables; we can see that all four of its four environ-
ment-specific phenotypes are tightly clustered, occupying a small region of the phenotype
space. Genotype B responds to all the factors more than Genotype A, therefore the four
environment-specific phenotypes occupy a larger area of the phenotype space. Genotype
C responds to one environmental factor but not to the others.

FIGURE 12.3 Two genotypes reared in two environments.
(A) Genotypes differ in their phenotypes but neither responds to
the environmental factor; (B) Both genotypes respond to the envi-
ronmental factor, in parallel directions; (C) One genotype responds
to the environmental factor, the other does not; (D) Both genotypes
respond but in different directions.
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An exemplary recent analysis illustrates the methods used to study plasticity, including
the structure of the comparisons that can be made and the methods for testing hypotheses.
In this experiment, Hollander and colleagues examined two ecomorphs of one species
of snail, Littorina saxatilis and another species, L. littorea (Hollander et al., 2006). L. saxatilis
is polymorphic in shell traits; its morphs differ in shell, thickness, and aperture area.
An ecologically important distinction between the two species is that L. saxatilis
releases miniature snails on the shore and therefore the juveniles experience the same
habitat as the (sedentary) adults, whereas L. littorea releases drifting larvae which therefore
experience a different environment from the adults. Because the environment of L. saxatilis
does not vary across life-history stages, they are predicted to be less plastic than L. littorea
even though the environment of the adults of both species is highly heterogeneous; adults
of both species are found in wave-exposed rocky shores that are free of crabs (a predator)
as well as in sheltered areas that are rich in the predator. The drifting larvae of L. littorea
encounter the rocky-shore habitats largely at random and their environments need not
resemble that of their parents, whereas the larvae of L. saxatilis remain in their parents’
environment. The prediction was that L. littorea would be more plastic.

To test this hypothesis, the juveniles of both morphs of L. saxatilis and juveniles of
L. littorea, were collected from various locations on the west coast of Sweden. The juveniles
were pooled so that the samples encompassed the variation among local sites. The juve-
niles were exposed to simulated wave action, or a predator cue (water-borne effluent from
a predator or water-borne effluent from crushed conspecifics) or to no treatment. Each
group contained at least 50 individuals and each was replicated in three aquaria. Analysis
of the variation among ecomorphs and species showed that the two ecomorphs are distinct
as are the two species, thus the null model for the statistical analyses included these
expected differences. Analyses were done to determine whether ecomorphs of L. saxatilis
and L. littorea exhibit plasticity, whether all three groups exhibit equal levels of plasticity
within and across treatments, and to identify the largest contrasts between treatments for
each group. Multivariate analysis of variance (MANOVA) showed the treatments had a
statistically significant impact on mean shape of each group.

To quantify the overall magnitude of plasticity, Hollander and colleagues measured dis-
parity within each group and compared it across groups. Although the measure of dispar-
ity was introduced in Chapter 10, we repeat it here. Disparity is the variance across

FIGURE 12.4 Norms of reaction for shape of three genotypes reared in four
environments. Genotype A varies little over the four environments. Genotype B
varies over the four environments, occupying a larger region of the phenotype
space. Genotype C responds to one environmental factor but not to the others.
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means, which measures the dispersion of treatment means from the grand mean for that
group:

DA 5

Pa
i51

ðXi2XÞTðXi 2XÞ
Pa

i51ðNi 2 1Þ (12.1)

where there is a total of a treatments, Xi is mean for the ith treatment, X is the grand mean
over all treatments, and N is the sample size for the group (e.g. for an ecomorph of
L. saxatilis).

The statistical tests of Littorina disparity were done by randomly assigning snails to
treatments within their own group, then computing the treatment means from those ran-
domized data, then computing the disparity from those randomized data, iterating the
procedure 9999 times. Adding the observed value to those 9999 gives 10 000 values. The
number of times that a value as large as or larger than the observed one could be obtained
by chance can then be calculated by counting the number of values equal to or exceeding
the observed one.

To determine which particular treatments have a large effect relative to other treat-
ments, and also to determine which treatments have a large effect in one group compared
to that same treatment’s effect in another group, distances between treatments were
compared within and between groups. These are the Procrustes distances between means.
For four treatments, there are six possible vectors extending between means: (1) control
mean to predator effluent-treatment mean; (2) control to conspecific effluent-treatment
mean; (3) control to simulated waves-treatment mean; (4) predator effluent-treatment
mean to conspecific effluent-treatment mean; (5) predator effluent-treatment mean to sim-
ulated waves-treatment mean; and (6) conspecific effluent-treatment mean to simulated
waves-treatment mean. As well as analyzing the lengths of these vectors, they also ana-
lyzed their directions by measuring the angles/correlations between them (the comparison
of directions by the analysis of angles or correlations between them is discussed in detail
in Chapter 11).

These comparisons of vector lengths and directions yielded 45 tests of vector lengths
within ecotypes, 18 tests of vector lengths between ecotypes, 45 tests of vector correlations
within ecotypes, and 18 tests of vector correlations between ecotypes. In light of the large
number of tests, a sequential Bonferroni test (Rice, 1989) was used. A Bonferroni test
divides the critical value, α, by the number of tests. So if there are 10 tests, and the desired
table-wide value of α is 0.05, 0.05 is divided by 10, yielding 0.005. A sequential Bonferroni
test is less conservative. Using this test, α is initially divided by the total number of tests
and the smallest p-value is judged against that, then α is divided by the remaining num-
ber of tests and the next smallest p-value is judged against that and so forth until reaching
one that is not significant.

Considering the large number of tests, especially the 45 tests of vector correlations
within ecotypes, it is remarkable that any differences were statistically significant.
With rare exceptions, the differences were very large (and statistically significant) or very
small (and therefore not statistically significant). An interesting result is that, in general,
both species exhibited similar magnitudes and directions of responses, contrary to the
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expectation that L. littorea would be more plastic. Perhaps even more surprising, the two
ecomorphs of L. saxitilis exhibit less within-treatment disparity (i.e. exhibit greater micro-
environmental canalization) when exposed to a treatment that mimics the environment of
the other ecomorph.

Visualizing Norms of Reaction

Norms of reaction for shape can be difficult to depict unless groups differ solely in the
magnitude of plasticity. If that is the sole difference, the norms of reaction can be depicted
just as they are for a one-dimensional trait; groups then differ solely in their position along
a single phenotype axis. The same vector would extend between any pair of means
because all are arrayed along that one axis. But, in more complex cases, when the direc-
tions of the responses also differ, we cannot represent a norm of reaction by a single phe-
notype axis. Several recent studies have contrasted the outcomes of varied treatments on
shape, depicting the norm of reaction by the contrasts between the resultant phenotypes.
One approach is to project the array of phenotypes onto a low-dimensional space; for
example, in the analysis detailed above of the impact of predator cues and wave-action on
shell morphology of Littorina saxatilis and L. littorea, Hollander and colleagues (2006)
showed the 12 treatment means projected onto the space of the first two principal compo-
nents of shape variation. Another approach is to present a series of contrasts that depict
the impact of the environmental factor on a single group. For example, a study of the
impact of dietary consistency on marine, benthic and limnetic threespine sticklebacks dis-
played the effects by a series of deformed grids, each showing the impact of a benthic or a
limnetic diet on marine, benthic or limnetic head shapes (Wund et al., 2008). Similarly,
another experiment on the impact of diet on shape examined two attributes of diet, its
hardness and calcium content; analyzing pharyngeal jaw shape (and size) of laboratory
stocks of the cichlid Amphilophus citrinellus subjected to three diet treatments: (1) intact
snails with shell, (2) peeled snails without shell, and (3) finely ground snails that were fro-
zen, with the fish feeding on the soft thawed outer layer (Muschick et al., 2011). Pairs of
treatments were compared by a Discriminant Function Analysis (see Chapter 6) and the
shapes at the extremes of each function were depicted as interpolated outlines. Similarly,
diet-induced plasticity of body shape of arctic char, Salvelinus alpinus, was analyzed by
feeding young of each ecomorph a diet that mimics the natural diet of either a benthic or
limnetic population of three ecotypes (Parsons et al., 2011). Both ontogenetic trajectories
and age-specific phenotypes were compared between ecomorphs reared on the same diet
in different lakes and within ecomorphs fed benthic versus limnetic diets. Discriminant
function analysis was used to visualize the impact of diet on body shape for each eco-
morph at two ontogenetic stages, depicting the contrasts by regressing shape on the dis-
criminant function scores.

CANALIZATION: QUANTIFYING VARIATION

Canalization refers to the ability to produce the same phenotype despite variation in
genotype and environments of rearing. A long-standing (but still controversial) hypothesis
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is that canalization evolves by stabilizing selection, which not only removes deviants from
the population but also favors mechanisms that suppress the expression of variation
(Waddington, 1942; Schmalhausen, 1949). As Schmalhausen (1949) put it, stabilizing selec-
tion produces a stable form by creating a regulating apparatus. Canalization, according to
this hypothesis, is the long-term effect of stabilizing selection. If we look at the distribution
of a phenotype, canalization is evident by a reduction in variance; compared to Genotype
A, Genotype B is more canalized (Figure 12.5).

Canalization is now often subdivided into genetic and environmental canalization
according to the source of the variation that is buffered. Canalization of genetic variation,
including novel mutations, is termed “genetic canalization” (Kawecki, 2000; Elena and
Lenski, 2001; de Visser et al., 2003), whereas canalization of environmental variation is
termed “environmental canalization” (for recent reviews of these concepts, see Debat
and David, 2001; Hallgrı́msson et al., 2002; Willmore et al., 2007). That genetic and envi-
ronmental canalization are distinguished in this classification scheme does not imply
that the two forms of canalization are physiologically distinct. A still open question is
whether they are. Answering that question is complicated by the several distinct forms
of environmental canalization, which is now subdivided into the canalization of varia-
tion across environments (“macroenvironmental canalization”), and canalization within
environments (“microenvironmental canalization”). Macroenvironmental canalization is
the converse of phenotypic plasticity. One rationale for distinguishing macro- from
microenvironmental canalization is that plasticity need not reduce the ability to buffer
random variation within an environment. Even a steep norm of reaction might be well
canalized.

Because macroenvironmental canalization is the converse of plasticity, macroenviron-
mental canalization is studied using the methods introduced in the previous section.
Microenvironmental canalization is usually studied by comparing variances. In studies of
shape, a variance can be calculated by measuring the Procrustes distance of each individ-
ual from the mean:

Var5

PN
j51 D

2
j

ðN2 1Þ (12.2)

FIGURE 12.5 Canalization shown as a
reduction in variance from that exhibited by
Genotype A to that exhibited by Genotype B.
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which is equivalent to measuring the variance of each coordinate, summed over all the
coordinates:

Var5

Pn
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(12.3)

If we have multiple groups, such as multiple treatments, and wish to test the hypothesis
that one genotype (or population) is canalized over multiple treatments, we would calcu-
late a pooled within-group variance by:

Varpooled 5
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(12.4)

In the case of Varpooled, the summed squared distances of j individuals from a treatment
mean are summed over all treatments. Confidence intervals can be placed on these mea-
sures of variance just as they are on measures of disparity, a topic discussed in depth in
Chapter 10.

One approach for testing the null hypothesis that two samples do not differ in their var-
iance, using permutations of residuals, was discussed above in context of tests for plastic-
ity. Another approach uses a t-test, computing the variance for each group at each
iteration of a bootstrap or permutation procedure, then subtracting one group’s variance
from that of the other, and iterating the calculation of the variances and the difference
between them at each iteration to generate the distribution of the difference between the
two variances. If the confidence interval for that difference includes zero, we could not
reject the null hypothesis that the two populations do not differ in their variances.

Example: Ontogenetic Decrease in Variance of Skull Shape

We exemplify an analysis of canalization by testing the hypothesis that variance
diminishes over ontogeny in the absence of any selective deaths in the population. To that
end, we compare the variance of skull shape across four ages, 10-, 15-, 20-, and 25-days
postnatal, of the randombred Hsd/ICR strain of the house mouse (Mus musculus domesti-
cus). The superimposed landmarks for each sample are shown in Figure 12.6; the estimates
for the variance in shape at each age, and standard errors of the estimate, are given in
Table 12.1. To compare the levels of variance between successive ages, we use the t-test
described above to evaluate the difference between variances relative to the pooled stan-
dard errors of those variances. Over the initial 5-day interval, variance is halved; the dif-
ference in the variances for the two samples is 0.000279. The 95% upper bound on the
confidence interval for the difference between the two variances is 0.00015639, and the
magnitude of the observed difference was exceeded by none of the 200 permutations.
After that point, variance is stable � no statistically significant differences are found
between successive age classes later. The initial reduction of variance, in the absence of
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any selective deaths in the colony, indicates that variation is developmentally regulated
and the later stability of the variance also suggests canalization because we would expect
to see a continued production of variation in light of the ongoing process of skeletal
development.

FIGURE 12.6 Ontogeny of variance for skull
shape of the house mouse. The superimposed
landmarks for skull shape of the house mouse,
Mus musculus domesticus. Ages, in days after birth,
are shown beneath the data. Variance and its stan-
dard error for four ages are given in Table 12.1.

TABLE 12.1 Skull Shape Variance of Mus musculus domesticus Sampled at Four Ages (Given in Days After
Birth), and the Standard Errors of the Variance

Age Variance Standard Error

10 0.000628 0.0001

15 0.000349 0.00005

20 0.000316 0.0001

25 0.000410 0.0001

The superimposed landmarks are shown in Figure 12.6.
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DEVELOPMENTAL STABILITY: QUANTIFYING
DEVELOPMENTAL NOISE

“Developmental stability” refers to the ability of a genotype to produce the same pheno-
type under the same environmental conditions by buffering developmental noise (Reeve,
1960a; Zakharov, 1992; Clarke, 1998; Van Dongen and Lens, 2000). Developmental stability,
or rather its converse, developmental instability, is usually measured by fluctuating asym-
metry (FA), the random deviations from bilateral symmetry. An advantage of measuring
developmental stability by FA is that we actually know the expected value for the trait
barring developmental perturbation: both sides of a bilaterally symmetric individual have
the same genotype and develop within the same environment so they should be identical,
barring developmental perturbations (Reeve, 1960b; Palmer and Strobeck, 1986).
Developmental stability has been intensively studied recently for at least three major rea-
sons. First, decreased developmental stability may provide a sensitive indicator of environ-
mentally or genetically stressed populations (Clarke, 1993; Graham et al., 1993; Estes et al.,
2006). If that is generally the case, elevated FA could serve as a useful biomarker for
stressed populations and aid conservation efforts. However, the causal connection
between stress (environmental or genetic) and FA remains a contentious issue because
many studies fail to find elevated FA in stressed populations (see Hoffmann and Woods,
2001; Hoffmann et al., 2005; Leamy and Klingenberg, 2005).

A second stimulus for studies of FA comes from theoretical models for the evolution of
variability. One interesting hypothesis is that selection for one variational property indi-
rectly selects for others; for example, selection for environmental canalization might indi-
rectly select for genetic canalization (e.g. Wagner et al., 1997). This has been termed
“plastogenetic congruence” by Ancel and Fontana (2000). Congruence between the classes
of canalization (genetic, and macro- and microenvironmental) and developmental stability
has thus become an important issue in evolutionary theory, stimulating several empirical
investigations of the correspondence between them (e.g. Debat et al., 2000; Hallgrı́msson
et al., 2002; Dworkin, 2005b; Santos et al., 2005; Willmore et al., 2005; Breuker et al., 2006;
Breno et al., 2011; Klingenberg et al., 2012). This is likely to remain an area of active inves-
tigation given the disparity and complexity of the results.

The Statistical Analysis of FA

FA is now usually studied by a two-way mixed model Analysis of Variance (ANOVA),
whose two main factors are Individuals (a random factor) and Sides (a fixed factor); FA is
quantified by the interaction term Individuals3 Sides (Leamy, 1984; Palmer and Strobeck,
1986). This approach was extended to shape data by Klingenberg and colleagues
(Klingenberg and McIntyre, 1998; Klingenberg et al., 2002) and has now been extended to
symmetries more complex than bilateral (Savriama and Klingenberg, 2011). Here we
restrict the discussion to bilateral symmetry and follow Klingenberg’s exposition of the
method.

In the case of bilateral symmetry, two kinds of symmetry can be distinguished (Mardia
et al., 2000). One is “matching symmetry”, which refers to the case in which there are two
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structures, one on the right side and the other on the left. In this kind of asymmetry,
typified by the two halves of the mammalian mandible, all landmarks are present on
both sides (Figure 12.7A). To analyze matching symmetry, we can compare the right to the
left side, using one configuration of landmarks for each side. The alternative is “object
symmetry”, typified by the mammalian cranium, a single structure with an axis of symme-
try along its midline (Figure 12.7B). Instead of analyzing two configurations, we analyze
a single one, and there are midline landmarks in addition to the bilaterally paired
landmarks. The ANOVA design and the analysis of the paired landmarks are similar for
both kinds of symmetry. But the analyses differ according to the type of symmetry
because matching symmetry is analyzed using two configurations per individual whereas
object symmetry is analyzed using just one. One important consequence of having all the
bilateral landmarks plus the midline landmarks within a single configuration is that
we can analyze the relationship between the two halves when we have object asymmetry
but not if we have matching asymmetry (Klingenberg et al., 2002).

The analysis of matching asymmetry is more straightforward so we begin with it. We
will assume that every individual is photographed twice on each side. The first step in the
analysis is to reflect all the configurations from one side, e.g. the left side, onto the other
so that we can compare the two sides in the same orientation. If the photographs were not
reflected before they were digitized, the reflection is done by changing the sign of the x-
coordinate for every landmark on one side. Following that reflection, the configurations
for both sides (for all replicates for all individuals) are superimposed using a standard
least squares Procrustes superimposition. Then the right and left sides of all replicates for
each individual are averaged, giving the estimate of the mean shape for that individual.
Variation among the mean shapes of the individuals is the variation explained by the
main factor “Individual”. To calculate the variation explained by “Side”, we compute the
difference between the two sides from the difference in average shapes of each side. That
is, for each individual we calculate its average right-side shape (over the replicate photo-
graphs) and its average left-side shape, and we then calculate the average for each side

FIGURE 12.7 The two
forms of symmetry for bilater-
ally symmetric forms. (A)
Matching symmetry; (B) object
symmetry
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over all individuals in the population. The difference between those two averages is the
variation explained “Side”. Measurement error is quantified by the variation over repli-
cates for each individual and side. This error is a combination of the photographic error
plus digitizing error. The statistical significance of “Side”, the fixed factor, is tested against
the interaction term and the statistical significance of FA is tested against measurement
error. The degrees of freedom for each term are the univariate degrees of freedom (e.g. 1
for side) multiplied by the dimensionality of the data.

The analysis of object asymmetry is more complex because we have only one configura-
tion per replicate. As a result, we cannot superimpose the right side onto a reflected left
side. Instead, we superimpose each configuration onto a reflected copy of itself. We thus
start by making that reflected copy, which involves first reversing the sign of the x-coordi-
nate of each landmark and then renumbering those landmarks to correspond with the
number it had in the original copy. For example, if landmark 2 on the left side is bilater-
ally homologous with landmark 4 on the right side, we would relabel the reflected land-
mark 4 as landmark 2 and similarly relabel landmark 2 as landmark 4. Then the original
and reflected configurations are superimposed (using the standard least squares
Procrustes superimposition). Following superimposition, each individual is symmetric and
the midline landmarks line up as do the midpoints between the paired landmarks.
Because the right and left sides of the paired landmarks are now redundant, the whole
configuration is described by the landmarks on just one side.

The variation of the paired landmarks is unconstrained � they can vary in all direc-
tions. But the variation of the midline landmarks is constrained � they can only vary in
one direction, which is along the midline. Any variation away from the midline would
mean that the midline is not the midline. Thus, when calculating the dimensionality of
shape (and the degrees of freedom for each effect) the constraint on the variation of mid-
line landmarks must be taken into account. For the symmetric component of variation,
there are 2K1P2 2 dimensions, where K is the number of paired landmarks and P is the
number of midline landmarks (this notation differs from that of Klingenberg et al. (2002)
because they use L for the number of midline landmarks but we have used L for the num-
ber of semilandmarks). So, if there are 20 paired landmarks and 5 unpaired landmarks,
there are 401 52 2 dimensions. For the symmetric component of a two-dimensional con-
figuration, only one dimension is used up by translation and none are used up by rotation
(hence22 rather than24).

In the analysis of object symmetry, the “Sides” component of the variation is calculated
from the difference between the original and reflected configurations. In the asymmetric
component of variation, just like in the symmetric component, the asymmetry of the
paired landmarks can be in any direction. This means that for K pairs of two-dimensional
landmarks there are 2K dimensions of variation. But asymmetry of the midline landmarks
is possible only in the direction perpendicular to the midline (or median plane) � if the vari-
ation was along the midline it would not be asymmetric. One consequence of this
restricted variation is the reduced dimensionality of the asymmetric component; the mid-
line landmarks add P dimensions, but their sum must be zero, eliminating a degree of
freedom (from both two- and three-dimensional data). The rotation step of the Procrustes
superimposition removes one additional degree of freedom from two-dimensional data
and two from three-dimensional data but none are used up by scaling or orientation of
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paired landmarks because variation in size or orientation of the asymmetric component is
informative about shape asymmetry. Following the superimposition, there are thus
2K1P2 2 in two-dimensional data, and 3K1P2 3 in three-dimensional data. The sum of
the dimensions for the symmetric and asymmetric component equal the total, i.e. 2
(2K1P)2 45 4K1 2P2 4 for two-dimensional data, and 3(2K1P)2 75 6K1 3P2 7 for
three-dimensional data.

What makes the remainder of the analysis yet more complicated is that the symmetric
and asymmetric components are orthogonal to each other � they occupy orthogonal sub-
spaces (see Mardia et al., 2000; Klingenberg et al., 2002). This means that the symmetric
individual component is in a different subspace than the asymmetric Side component, and
the symmetric and asymmetric components of measurement error are also in different
subspaces. That poses no problem for testing directional asymmetry (i.e. Sides) because
Sides is tested against FA and both are in the asymmetric component. But FA is tested
against measurement error and the symmetric and asymmetric components of measure-
ment error are in different subspaces. Klingenberg and colleagues (2002) suggest using the
asymmetric component of the measurement error for the test, which means that measure-
ment error is computed from the difference between the original and reflected configura-
tions for each replicate. The average of those differences is the asymmetric component of
the measurement error.

The statistical analysis can be done two ways. One is to use the sums of squares of the
coordinates (see the discussion of Goodall’s F-test, Chapter 8 and the discussion of the per-
mutational Manova, Chapter 9). Klingenberg and colleagues call this a “Procrustes
Anova”. This test assumes the equality and independence of variance at each landmark.
The alternative is a multivariate test that uses the whole covariance matrix, which requires
inverting the variance�covariance matrix. Because there are more dimensions than
degrees of freedom for shape, the covariance matrix cannot be inverted. One solution is to
use a generalized inverse, or if the determinant of the Sums of Squares and Cross-
Products matrix must be calculated (as in the case of Wilk’s Λ), the product of the non-
zero eigenvalues can be used instead.

Example: Fluctuating Asymmetry of Prairie Deer Mouse Mandibular and Cranial
Shape

We exemplify the analysis of matching asymmetry by a study of prairie deer mouse
(Peromyscus maniculatus bairdii) mandibular shape FA and the analysis of object asymmetry
by a study of prairie deer mouse cranial shape FA. In the case of matching asymmetry, FA
of mandibular shape is highly significant based on a Procrustes ANOVA, with all terms
tested by permutations (Table 12.2). We can visualize the spatial structure of FA by its first
principal component of variation (Figure 12.8A). FA is especially pronounced in the
regions of the angular and coronoid processes, and there is also an interesting pattern of
variation in the position and height of the molar alveolus. In the case of object asymmetry,
FA is statistically significant as judged by a Procrustes ANOVA (Table 12.3) and also by
MANOVA that takes the covariance matrix into account. FA is especially pronounced
most anteriorly and in the lateral braincase, as evident from its first principal component
(Figure 12.8B).
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Measuring the Overall Magnitude of FA

To compare levels of FA across populations we need a measure of the overall magni-
tude of FA. In the literature of traditional morphometric data, there is a large, even bewil-
dering, array of such metrics. Palmer and Strobeck (2003) list 18 of them, some with two
variants. Fortunately, only one of those is suitable for landmark data, and only two more
have been added to the list. Of these, two are in units of Procrustes distance and the other

TABLE 12.2 Two-Way Mixed Model Procrustes ANOVA of Fluctuating Asymmetry of the Prairie Deer
Mouse Mandible

Source SS DF MS F p

Individuals 0.21283 17088 1.2455e-005 9.62 ,0.001

Sides 0.00082 192 4.2432e-006 3.28 ,0.001

Individuals3 Sides 0.02211 17088 1.2941e-006 5.12 ,0.001

Measurement error 0.00874 34560 2.5298e-007

FIGURE 12.8 First principal component of variation of fluctuat-
ing asymmetry of the prairie deer mouse (Peromyscus maniculatus
bairdii). (A) Mandible; (B) cranium.
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is in units of Mahalanobis distance (which takes the covariance structure into account). All
three can be calculated by hand (or rather, in a spreadsheet). Of course, the calculation
does not have to be done by hand � there are programs that will do it for you, but it is
easy to understand the procedure if you can implement it yourself.

The first measure is a conventional Procrustes distance between each individual’s
right�left distance and the bilaterally symmetric mean shape. To calculate this in a spread-
sheet, open the file that contains the superimposed right and left sides. Subtract the coordi-
nates of one side from those of the other. This subtraction gives the difference between the
right and left sides for that individual. Then square the differences for each coordinate,
summing those squares over all the coordinates for that individual. The square root of that
sum is the measure of overall FA for each individual. The second metric based on the
Procrustes distance differs from the first only in that the average directional asymmetry is
the standard instead of the bilaterally symmetric mean. This measure of FA is calculated
just like the first except the population’s average right�left difference is subtracted from
each individual’s right�left difference. No such subtraction was necessary in the first
case because the average right�left difference for a bilaterally symmetric form is zero.
After subtraction, the differences are squared and summed and the square root is taken of
the sum.

The third metric is a Mahalanobis distance between the two sides (Klingenberg and
Monteiro, 2005). This calculation, which is more involved than the other two, can also be
done by hand. The first step is to compute the right�left differences for each individual.
But these differences are not squared or summed over the coordinates. Rather, after calcu-
lating the right�left differences for each coordinates for all individuals, the data are sub-
jected to a Principal Components Analysis (PCA) of the covariance matrix. Then the scores
for the principal components (PCs) are standardized to unit variance (which is done by
squaring them, summing the squares, taking the square root and dividing each score by
that value). The number of PCs to use in this calculation depends on the dimensionality of
the data. If the data consist solely of landmarks, and the PCA was done on the partial
warps, all the PCs should be used when computing FA. If the analysis is instead done
using the superimposed coordinates (or Procrustes residuals), the last four PCs should be
excluded from the analysis because there are 2K2 4 dimensions but 2K PCs. When the
data include semilandmarks, the number of PCs to use is 2K1 L2 4 (for two-dimensional
data). The same reasoning extends to three-dimensional data � the number of PCs used in

TABLE 12.3 Two-Way Mixed Model Procrustes ANOVA of Fluctuating Asymmetry of the Prairie Deer
Mouse Cranium

Source SS D MS F p

Individuals 0.15978 5980 0.0000267188 7.16 ,0.001

Sides 0.0064622 52 0.000124272 33.31 ,0.001

Individuals3 Sides 0.0223116 5980 0.000003731 1.28 ,0.001

Measurement error 0.0689126 23608 0.0000029190 –
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the calculation should equal the dimensionality of the data. Fortunately, this procedure
does not actually need to be done by hand.

Using any one of the measures of FA, it is possible to test hypotheses that predict ele-
vated or reduced FA. The hypothesis that two or more populations differ in average FA
can be tested just like the hypothesis that two or more populations differ in variance. One
test that is particularly insensitive to deviations from normality is Levene’s test (Levene,
1960), often used to test for differences in variance. What Levene’s test compares is the
average deviation of points from the mean of the sample. To carry out this test, which can
be done in Excel, calculate the level of overall FA for each individual and subtract that
from the mean (or median) value, and use the absolute value of that deviation in the test.
If FA is high, the mean value of that deviation will be large. Then use a t-test or ANOVA
to compare the mean values.

ANALYZING THE RELATIONSHIP BETWEEN PLASTICITY,
CANALIZATION AND DEVELOPMENTAL STABILITY

Numerous studies have examined the relationship between plasticity, canalization and
developmental stability (e.g. Scheiner et al., 1991; Debat et al., 2000; Hoffmann and Woods,
2001; Dworkin, 2005a,b; Santos et al., 2005; Willmore et al., 2005; Breuker et al., 2006;
Hollander et al., 2006; Breno et al., 2011; Klingenberg et al., 2012). One goal of many stud-
ies is to test the hypothesis that there is a “general buffering capacity”. What “general”
means can differ between studies, but the usual aim is to test the hypothesis that the same
mechanism(s) buffer variation arising from different sources. One possibility is that
mechanisms that buffer phenotypes against the perturbations also canalize them against
environmental perturbations, whether the environmental perturbations are macro- or
microenvironmental or even developmental noise. Sometimes the question is framed more
narrowly, such as whether mechanisms that enable phenotypes to respond to macroenvir-
onmental variation make them more sensitive to developmental noise (e.g. Scheiner et al.,
1991).

The hypothesis that the same mechanisms buffer more than one sort of perturbation
can be tested in two ways. The first is to estimate the correlation between a measure of
variance (genetic vs environmental or macro- vs microenvironmental) and/or a measure
of FA. The second is by comparing covariance matrices. This is done by comparing the
covariance matrix for one component of variation (e.g. “Individual”) to another (e.g.
“FA”). Using the first approach, the question is whether individuals who most deviate
from the mean also most deviate from bilateral symmetry, i.e. whether an individual’s
deviation from the mean predicts its deviation from bilateral symmetry. In the second
case, the question is whether the buffering mechanisms have the same morphological
effects on variation. Both methods for testing the hypothesis are widely used, and both are
often used in the same study.

The first approach is straightforward to apply. The first step is to calculate each indivi-
dual’s deviation from the relevant mean (e.g. the mean shape within an environment). The
second is to calculate its deviation from the other relevant mean, or from bilateral symme-
try. Given these two measures of each individual’s deviations, the hypothesis is tested by
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measuring the correlation between them. If that correlation is statistically significant it
would support the hypothesis of a common buffering mechanism. The second approach is
less straightforward because it requires comparing covariance structures and methods for
comparing covariance structures are a matter of some contention. However, the most com-
monly used method is to estimate the correlation between two matrices and to test its sta-
tistical significance by a Mantel test (Mantel, 1967). The matrix correlation is a standard
Pearson product-moment correlation calculated over the corresponding entries in the two
covariance matrices. Corresponding entries would be, for example, the covariance between
the x-coordinate of the first two landmarks in the two matrices � that covariance in one
matrix corresponds to that same covariance in the other matrix. The matrix correlation can
be calculated by hand if the matrices are small; that involves arranging the two matrices in
two column vectors (omitting the redundant elements and, if desired, the variances along
the diagonal). The two matrices should then be matched up, with corresponding entries
on each row. Once the matrices are turned into column vectors, the correlation is calcu-
lated between the two columns.

The Mantel test is the most common test of the null hypothesis that the two matrices
are no more similar than expected by chance. To determine whether the correlation is sig-
nificant, the elements in one matrix are randomly permuted and the correlation is mea-
sured between the permuted matrix and the other one, at each iteration, repeating this
procedure many times. The correlations obtained from these permutations provide the dis-
tribution of the correlations between randomly related matrices. Given this distribution,
the number of correlations that equals or exceeds the observed one can be counted.
Usually, the observed correlation is included in the count, so if you do 100 permutations
and obtain a p-value of 0.01, one value obtained by 99 random permutations plus the
observed correlation are equal to or greater than the observed one. The test needs some
modification to be used for geometric data because the standard version of the test would
permute x-coordinates independently of y-coordinates. Adapted for geometric data, the
Mantel test permutes landmarks as units (Klingenberg and McIntyre, 1998). The test has
also been modified to allow for comparisons between the covariance matrix of object FA
and individual variation, which, if you recall from the previous section on FA, are in dif-
ferent subspaces. The test is done by omitting the midline landmarks (and one whole side,
which is redundant), thereby limiting the analysis to the paired landmarks on a single side
(Klingenberg et al., 2002).

Examples: Comparing Phenotypic Variation to FA for Prairie Deer Mouse
Mandibular and Cranial Shape

We first test the hypothesis that an individual’s deviation from bilateral symmetry
is correlated with its deviation from the mean shape, using the Procrustes distance from
the bilaterally symmetric shape as our measure of FA. Similarly, we use that individual’s
Procrustes distance from the mean shape as our measure of its deviation from the mean.
In the case of the mandible, the correlation is a very weak 0.09, which is not statistically
significant (p5 0.38). For the cranial data, the correlation between these two measures is
a weak 0.232, which is nonetheless statistically significant (p5 0.012). We then take the
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second approach, calculating the correlation between the covariance matrices for the FA
and symmetric (among-individual) components of variation. The resemblance between
these two covariance matrices can be examined visually by looking at each one’s dominant
dimensions of variation. The first two principal components for the mandible variation
and FA are shown in Figure 12.9. When the diagonal is included, so that the variances as
well as covariances are included in the analysis, the correlation is fairly high, 0.694, drop-
ping very slightly to 0.643 when the diagonal is excluded. Not surprisingly, both correla-
tions are statistically significant, p, 0.001. In the case of the cranium, whose first two PCs
are shown in Figure 12.10, the correlation between the two matrices is also fairly high,
0.586, and statistically significant (p, 0.001) when the diagonal is included, but the corre-
lation drops to a very low 0.038, which is not statistically significant (p5 0.61) when the
diagonal is excluded.

FIGURE 12.9 Comparing patterns of sym-
metric and fluctuating asymmetric covariation.
First two principal components of symmetric
variation (among individuals) and fluctuating
asymmetry of the prairie deer mouse cranium.

FIGURE 12.10 Comparing patterns of sym-
metric and fluctuating asymmetric covariation.
First two principal components of symmetric
variation (among individuals) and fluctuating
asymmetry of the prairie deer mandible.
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The comparisons that we just did were intended to be merely exemplary of the methods
used to test a hypothesis of a generalized buffering mechanism. These were not carefully
controlled experiments that could isolate purely microenvironmental, macroenvironmental
or genetic variation. There are, however, several carefully controlled studies that assess
the relationship between FA and variation, both genetic and environmental. For example,
Breuker and colleagues (2006) compared levels of FA and variation of Drosophila melanoga-
ster wing shape across 115 genotypes. To quantify FA, they used both the Procrustes dis-
tance of each individual from the bilaterally symmetric shape and the Mahalanobis
distance. Using the Procrustes distance, they found a correlation of 0.49 between FA and
variation among individuals, which rose to 0.67 based on the Mahalanobis distance. They
also examined the pairwise correlations between covariance matrices of variation and FA
for the 115 genotypes. Including the variances in the analysis produced correlations rang-
ing from 0.54 to 0.91; excluding the diagonals led to correlations ranging from 0.31 to 0.79.
Other studies of insect wings have similarly found moderate to high correlations between
covariance matrices of FA and variation (Klingenberg and McIntyre, 1998; Klingenberg
and Zaklan, 2000; Klingenberg et al., 2001). But variance and FA do not always show a
strong relationship to each other. In an exceptionally extensive analysis, Dworkin (2005b)
found that genetic and environmental perturbations can have a profound impact on vari-
ance, but genetic and environmental canalization appear to be independent of each other.
In contrast to studies of insect wings, those of the mammalian skull usually find very low
or even non-significant matrix correlations between phenotypic variance and FA (Debat
et al., 2000; Willmore et al., 2005; Breno et al., 2011). For example, using a quantitative-
genetic analysis, Willmore and colleagues estimated the correlation between FA and the
environmental component of variation at just 20.07; the highest correlation was between
FA and phenotypic variation, which was merely 0.049.

Studies that compare levels of FA to variance, both genetic and environmental, address
one form of the hypothesis of a general buffering mechanism. But the hypothesis could
also be framed in terms of the developmental pathways being buffered. Even if there is no
general relationship between macro- and microenvironmental, and/or between genetic
canalization and developmental stability, there may still be general buffering mechanisms
that indiscriminately buffer a developmental pathway against all sources of perturbations.
But the results obtained by comparing covariance matrices of FA and variance may actu-
ally tell us more about the mechanisms of morphological integration than buffering.

PREDICTING THE STRUCTURE OF COVARIATION:
MORPHOLOGICAL INTEGRATION AND MODULARITY

Morphological integration and the related property of modularity have long been the
focus of quantitative evolutionary developmental biology. Recent developments in evolu-
tionary theory have stimulated a resurgence of interest in both because of growing interest
in “evolvability”, i.e. the ability to evolve. The fact that organisms are able to evolve had
not prompted much theoretical attention until recently, perhaps because that ability has
been taken for granted (Wagner and Altenberg, 1996; Hansen, 2003). After all, it is obvious
that organisms can evolve because they do. What raised questions about the ability to
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evolve was the miserable failure to produce functioning computer programs by the pro-
cesses of mutation and selection of code, which randomized their behavior rather than
improved them (for an overview of this work and its relationship to evolutionary biology,
see Wagner and Altenberg, 1996). Not surprisingly, research in evolutionary computing
turned to the question of what could enable programs to evolve. This question, in turn,
prompted questions about what enables organisms to generate selectively useful variation?

Modularity is now regarded as one of the key attributes of evolvable systems because it
makes it possible to improve one part (of both computer code and morphology) without
interfering with already optimized parts. The integration of adaptively interdependent
traits within modules, and the (quasi)-autonomy of individual modules, enables one func-
tional complex to evolve when others are under stabilizing selection. This theory is the
basis for one definition of “modularity”, one which incorporates the idea of “selectively
useful” variation into the definition of modularity itself. According to this definition, mod-
ules comprise traits that collectively serve a primary function, with different modules serv-
ing different primary functions (Wagner, 1996). Each complex is internally integrated due
to the same genes affecting multiple traits within the complex and the complexes are
genetically independent, or nearly so. This definition of modularity is represented by a
classic diagram (Figure 12.11; after Wagner, 1996; Wagner and Altenberg, 1996) which
shows two functions, Function 1 and Function 2, each served by multiple traits (T1�T7),
with each trait being affected by many genes (G1�G6), most of which affect more than
one trait. According to this diagram (and to the theory it represents), a gene typically
affects two or more traits within a single module, with few genes affecting traits within
different modules. This diagram presents a sharp contrast to one long-standing view of
genetic architecture � universal pleiotropy. The idea of universal pleiotropy raised ques-
tions about the causes of uncorrelated traits; the explanation for the lack of a correlation is
that positive and negative pleiotropic effects cancel out, i.e. “antagonistic pleiotropy”, and
it is one contrast to the theory portrayed by the diagram: independent traits are indepen-
dent because pleiotropic effects are restricted to subsets of traits. As emphasized by Mezey

FIGURE 12.11 The classic depiction of modularity (after
Wagner, 1996; Wagner and Altenberg, 1996) as the restric-
tion of pleiotropic effects to complexes of traits serving the
same primary function. Shown are two functional com-
plexes, Function 1 served by traits T1�T4, and Function 2,
served by traits T5�T7. The traits serving Function 1 are
affected by genes G1�G3, all of which affect multiple traits
within the complex and, with the exception of G3 that
affects T6 belonging to the complex serving Function 2, all
the affects of G1�G3 are restricted to the traits serving
Function 1. Similarly, the traits serving Function 2 are
affected by genes G4�G6, all of which affect multiple traits
within the complex and, with the exception of G4 that
affects T4 belonging to the complex serving Function 1, all
the affects of G4�G6 are restricted to the traits serving
Function 2.
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and Houle (2003), when the organization of the genotype�phenotype map is modular, the
effects of a group of genes are limited to distinct aspects of the phenotype.

The idea that effects of groups of genes are restricted to functionally coupled traits is
not always incorporated in the definition of modularity. One alternative definition empha-
sizes the structural property of modularity, i.e. that modules are highly integrated inter-
nally and (quasi)-autonomous with respect to other modules. By this definition, it is not
necessary for modules to contain functionally related traits, but it is necessary that they be
conditionally independent of each other. The requirement of conditional independence
also comes from the theoretical analysis of evolvability; Hansen and colleagues (Hansen,
2003; Hansen et al., 2003) define the “relevant evolvability” of a trait as its ability to
respond to directional selection when the other traits are under stabilizing selection. Thus,
it is the ability of one trait (or complex) to evolve when others are held constant that mat-
ters to evolvability. Two traits might be correlated and therefore each seems to lack the
independence required to evolve individually when the other is held constant, but if their
correlation is due to the mutual dependence on some other trait, the two may be indepen-
dent when holding that third trait constant. If so, they are conditionally independent. A
strong and purely structural definition of modularity is that modules comprise traits that
are all mutually informative (conditionally dependent) and conditionally independent of
the traits within other modules (Magwene, 2001). This structural definition is depicted in
Figure 12.12. This figure shows a graph, in which each trait is a node; the edges between
nodes connect conditionally dependent traits. In the absence of an edge, the traits are con-
ditionally independent. Within each module there is an edge between every pair of traits,
but between modules there are no edges. A weaker structural definition of modularity
relaxes the requirement that all the traits within a module be mutually informative.

A third definition of modularity reframes the concept by highlighting its developmental
origins (Figure 12.13; after Klingenberg, 2008). One notable distinction between this dia-
gram and the one shown in Figure 12.11 is that this one replaces functional with develop-
mental modules (M1, M2). A second distinction is that this diagram shows genes affecting
developmental pathways rather than traits � the dotted lines show the genetic effects, the
solid lines show the architecture of the pathways. Adding the pathways to the diagram
rather than leaving them implicit makes it possible to depict two ways in which genetic
correlations arise developmentally. One is by the same gene being expressed at two (or
more) times or places, which Klingenberg terms “parallel variation”. The other is by direct

FIGURE 12.12 The structural concept of modularity. The nodes of the
graph represent traits (T1�T10); those that are independent of each other,
controlling for all others, are connected by an edge. Modules comprise traits
that are all directly connected to each other. No edges connect the two mod-
ules; they are conditionally independent.
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interactions within and between pathways, such as signaling interactions, partitioning of
tissue, or other mechanisms that can transmit variation along and between pathways. The
distinction is important because, in the case of parallel variation, the source of the varia-
tion is also the cause of the correlation. That is not the case for direct interactions. In the
case of direct interactions, the cause of the correlation is the mechanism that regularly
associates the development of the two traits. If variation arises upstream of a branch in the
pathway, the variation will be transmitted downstream along both branches. Even if the
variation is due to a random developmental perturbation, the variation will be transmitted
downstream or from one pathway to another via a signaling interaction. Modules are thus
highly integrated internally due to many, often strong, direct interactions within them,
exceeding those that take place between modules (Klingenberg, 2005, 2008). This develop-
mental view of modules not only reframes the hypothesis of modularity, it also yields a
novel technique for testing hypotheses about modularity. Because direct interactions
within developmental modules can regularly associate traits even when the source of the
variation is a random developmental perturbation, fluctuating asymmetry becomes a use-
ful tool for analyzing the structure of developmental modules. When FA and individual
variation are highly similar in structure, direct interactions within developmental modules
play a large role in integrating the phenotype (Klingenberg et al., 2001; Klingenberg, 2005,
2008). Whether the modular organization of development is an intrinsic feature of devel-
opmental systems and a potential constraint on the adaptive evolution of integration
(Klingenberg, 2004, 2005, 2008) are open and provocative questions.

To this point, we have not tried to define morphological integration except in terms of
modularity. But the ideas of integration and modularity can be partially separated. They
are not separate when variation actually does have a modular structure, but variation
might not actually be modular. It may be that genetic effects are spatially restricted but
continuous rather than tightly clustered and even partially overlapping, producing what
Roseman and colleagues (Roseman et al., 2009) termed “integration without modularity”.
Hallgrimsson has offered a developmental explanation for a non-modular organization of

FIGURE 12.13 A developmental reframing of
the classic concept of modularity, giving a devel-
opmentally explicit version of the genotype�
phenotype map (after Klingenberg, 2008). There
are two developmental modules (M1, M2) com-
prising two groups of traits (T1�T4, T5�T7).
Genes affect developmental pathways rather than
traits; the impact of the gene on a pathway is
shown as a dotted line intersecting a pathway,
shown as a solid line. A direct interaction
between pathways is shown as an intersection
between solid lines.
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variation; he emphasizes the dynamics and complexity of development, and the fact
that the structure of variation is an outcome of multiple variance-generating processes
(Hallgrı́msson et al., 2007a,b, 2009). Those processes may partially overlap spatially, ampli-
fying each other in some regions and canceling out in others. Even if each individual
process is modular, their net effect on variation need not be. We might also anticipate a
non-modular organization of variation when functional complexes are not modular
(Zelditch et al., 2008, 2009). Due to the dynamics and complexity of development, and/or
the functional organization of morphology, we might find integration but not modularity.

The methods that we describe below test hypotheses of modularity. Although there are
methods for exploring the data to find the best-fitting model (one of these is discussed
below), the methods are used primarily to test hypotheses derived from developmental
biology, functional morphology or any other source of theory that predicts the structure of
variation. An important methodological consideration when it comes to choosing a
method is the array of hypotheses against which your a priori hypothesis is tested.
Regardless of the method you choose, it is important to remember that the best-fitting
hypothesis is the best in a specific context � the alternatives that you entertained.

A Brief Overview of Methods for Analyzing Modularity

All three of the methods that we describe below require stating a hypothesis that pre-
dicts the modular structure of the data. In all three cases that is done by subdividing a
configuration of landmarks into two or more subsets. For example, we can subdivide the
mandible into two subsets of landmarks (plus semilandmarks) according to the hypothesis
of mandibular modularity favored by quantitative genetic studies. The hypothesis posits
two modules, one the tooth-bearing region, the other the muscle-bearing region (Cheverud
et al., 1997, 2004; Mezey et al., 2000; Ehrich et al., 2003; Cheverud, 2004; Klingenberg et al.,
2004). The division is usually made at the point where the molar alveolus separates
from the coronoid process, and where the angular process can be distinguished from the
horizontal ramus (Figure 12.14). (For brevity, we refer to this as the Front/Back model.)

FIGURE 12.14 A hypothesis
of mandibular modularity. The
Front/Back hypothesis predicts
that there are two modules, one
comprising the tooth-bearing
region of the jaw, the other com-
prising the muscle-bearing region
of the jaw.
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One method for testing the hypothesis of modularity is to assess the covariance between
the two modules relative to the covariance within them (Klingenberg, 2009). If the hypoth-
esized boundary between the modules is correctly positioned, the covariance between the
two blocks should be lower than the covariance obtained by any alternative partitioning,
subject to the constraint that the alternative also contains two blocks having the same
number of landmarks as in the proposed modules. The logic of the test is depicted in
Figure 12.15 (after Klingenberg, 2008). The black line separates the two actual modules,
one containing five landmarks, the other six. The covariances within each of the two sub-
sets are high, as evident from the many arrows depicting interactions between them.
Interactions between the two modules are few, so the covariance between them is low.
The gray line separates the two subsets of landmarks that are hypothesized to be modules,
one containing five landmarks, the other six. But the line separates landmarks belonging
to the same actual modules. As a result, the covariances between the hypothesized mod-
ules will be high, far higher than the covariance that would be obtained by partitioning
the landmarks along the black line. Because the covariance between modules should be
lower than the covariance between randomly partitioned subsets of landmarks, the testing
procedure determines whether the covariance between the hypothesized modules is signif-
icantly lower than expected by chance. This method, like the other two, has no name, so
we will call it the “Minimum intermodular covariance method”.

The second method tests a hypothesis of modularity by producing the covariance
matrix predicted by the hypothesis and assessing the goodness of fit (Marquez, 2008). The
covariance matrix predicted by the model is estimated by making the modules statistically
independent of each other � they are placed into orthogonal subspaces. These intermodu-
lar covariances are fixed but the within-module covariances are estimated from the data.
Having produced the covariance matrix predicted by the model, it can then be compared
to the observed covariance matrix. The null hypothesis is that the difference between the
observed and expected covariance matrices is no greater than expected by chance. This is
tested by comparing the difference between observed and expected matrices to the range
of values for the difference that could be obtained when the null hypothesis is true. The

FIGURE 12.15 Logic of testing for low
RV. Two developmental modules are
shown, each enclosed in a rectangle, with
the boundary between them represented by
a black line. There are extensive interac-
tions within each module, represented by
the arrows connecting the landmarks. Few
interactions occur between modules. The
covariance between the two modules will
be lowest if the two are separated along the
black line, due to the few interactions
between landmarks across that line. In con-
trast, the covariance between the two mod-
ules will be higher if the two are separated
along the dotted gray line, due to the many
interactions between the landmarks across
that line.
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method allows many models to be fit to the data, with the best-fitting model being the one
that deviates least from the data, taking into account the number of parameters fixed by
the hypothesis. The number that is fixed is important because the free parameters (the
intramodular covariances) are estimated from the data; models that have relatively few
fixed parameters will always fit well. We will call this method the “Minimum deviance
method”.

The third method differs from the other two in two major respects. First, it produces a
correlation matrix rather than a covariance matrix and second, it works with distance
matrices rather than coordinates (Monteiro et al., 2005; Monteiro and Nogueira, 2009). The
correlations are obtained by subdividing the data into modules, then calculating the pair-
wise Procrustes distances between all individuals for each module. Then the correlation
between the distance matrices is estimated. For example, given the hypothesized two mod-
ules of the Front/Back model, we would divide the coordinates into those two subsets
and calculate the pairwise Procrustes distances between all individuals for each subset of
landmarks and then compute the matrix correlation between those two distance matrices.
In this simple case of only two modules, we could test the hypothesis that they are inde-
pendent of each other by the Mantel test. For more complex hypotheses, we could use any
of the methods conventionally used in studies of morphological integration to evaluate the
fit of the hypotheses to the correlation (or inverse) correlation matrix. We could also use
exploratory methods to select the best-fitting model. We will call this method the
“Distance-matrix method”.

After discussing each method in more detail, we will apply all three of them to evaluate
four hypotheses of mandibular modularity.

Minimum Intermodular Covariance Method

The test for modularity based on estimating the covariances between modules relative
to those within modules was devised by Klingenberg and implemented in his software,
MorphoJ (Klingenberg, 2011). The test statistic is Escoufier’s RV coefficient (Escoufier,
1973). This was introduced in Chapter 7 (Partial Least Squares), but repeated here for
convenience: the RV is a multivariate extension of the ordinary univariate squared
correlation:

RV5
traceðR12Rt

12Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
traceðR1Rt

1ÞtraceðR2Rt
2Þ

p (12.5)

The numerator is the summed squared covariances between the two sets of variables
and the denominator is the square root of the product of the summed squared variances
within each block. RV ranges from 0 (no covariance) to 1 (complete covariance). When we
introduced the RV in Chapter 7, we used it to test the hypothesis that the two blocks of
landmarks covary so we tested the null hypothesis that the observed RV is no higher than
expected by chance. But, as discussed above, in the context of a study of modularity, the
expectation is that the RV will be lower than expected by chance.

The details of the test depend on two decisions that you make. The first is whether
hypothesized modules should be treated as separate shapes or as parts of a whole. The
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distinction lies in how the test will use information about the connections between the
subsets (e.g. the relative sizes of the partitions and their position relative to each other). In
terms of the details of the method, the distinction lies in whether each module is superim-
posed separately or the entire configuration is superimposed only once. When each mod-
ule is superimposed separately, information about the relative sizes and positioning of the
modules is removed from the data. What matters is the covariance between shapes. When
the variation in one shape is associated with the variation in another, that will generate
covariance between the modules. In contrast, when the subsets are regarded as parts
of a whole, any variation in the relationship between that generates covariances in
relative sizes and positions is retained in the data. As Klingenberg points out, there is no
right or wrong decision about this. In the case of the mandible, we might base the
decision on considerations of function. Because the mandible is functionally a lever, it
makes sense to treat these two parts of the lever as two parts of a whole. Alternatively, we
could decide that function is immaterial and disregard the relationship between the two
parts, testing the hypothesis that dividing the mandible into front and back produces a
lower covariance between the two shapes than any alternative division of the mandible
into two parts, having the same number of landmarks within them as our hypothesized
modules.

The second decision is whether modules must be spatially continuous. What spatially
continuous means, in this context, is that a module comprises all the landmarks that are
adjacent to each other except for those on the boundaries between modules. More pre-
cisely, the definition of spatial contiguity for partitions of landmarks uses the graph theo-
retic concepts of node and edge introduced above in the context of a structural concept of
modularity. When defining contiguity of landmarks, the nodes on the graph represent the
landmarks and the edges connect them; a set of landmarks is spatially contiguous if every
landmark within the set is connected to every other, either directly (by an edge between
that pair of landmarks) or indirectly through the other landmarks in the set. It is thus pos-
sible to reach every landmark within the set by moving along the edges. This decision
about continuity also has no right or wrong answer. It is reasonable to anticipate that
developmental interactions act over spatially continuous regions, but those regions may
not remain continuous through the whole course of development � they might be inter-
rupted by morphogenetic movements, outgrowth or cell death. Also, in cases like the man-
dible, there is a landmark within the tooth-bearing region (the one on the masseteric fossa)
that is a muscle insertion site so it might plausibly be regarded as part of the muscle-
bearing region. The reason why this decision about continuity matters to the method is
that the RV for the hypothesis will be compared only to the random, continuous (also
called “contiguous”) modules if continuity is a requirement for modules. For purposes
of the example, we will restrict the analysis to contiguous modules.

When comparing the RV to all (or a subset) of possible alternatives, the comparisons
are restricted to partitions that have the same number of landmarks as in the hypothesized
modules. For example, if a hypothesis proposes that there are two modules, one having 10
landmarks and the other 15, all the alternative hypotheses will also comprise two modules,
one having 10 landmarks and the other 15. If there are few landmarks in the configuration,
it is possible to compare the RV for the data to all the possible alternatives. In the case of
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two partitions, one having p landmarks, the other m2 p, the number of possible
partitions is

m
p

� �
5

m!

ðm2 pÞ!p! (12.6)

With few landmarks, exhaustive enumeration is feasible, but if there are more than a
few (e.g. .20) the number of alternatives becomes enormous. The requirement that mod-
ules be contiguous will result in far fewer than the total number of alternatives, but the
number could still be very large. Rather than use exhaustive enumeration, the alternatives
can be randomly sampled; Klingenberg recommends at least 10 000 permutations because
we are interested in the left tail of the distribution.

The permutation procedure is straightforward when the subsets are separately superim-
posed but it becomes more complex when the subsets are simultaneously superimposed.
When they are separately superimposed, the hypothesis of independence between the sub-
sets can be tested by randomly permuting the observations in the two sets of landmarks.
At each iteration of the procedure, the observations in one subset are randomly permuted
and the RV is calculated; its statistical significance is assessed by the proportion of the
cases in which the observed RV is equal to or higher than the observed one. The procedure
is more complex when the subsets are simultaneously superimposed because the test must
take into account the interdependence between partitions produced by the superimposi-
tion procedure. The procedure is thus modified to include a new Procrustes superimposi-
tion at each iteration, so the observations are randomly permuted in one of the two
subsets, then they are combined into a single configuration. It is not likely that they are
still optimally superimposed, so the superimposition is redone and the RV of this re-
superimposed configuration is compared to the observed one. This whole procedure �
random permutations of one of subset followed by a re-superimposition of the data, is
done at each iteration.

To this point, we have talked about the analysis of just two modules, but the analysis is
not limited to a two-module case even though the RV measures the covariance between
two blocks of data. Klingenberg (2009) extended it to a multiblock case, introducing the
multiset RVM coefficient, which is the average of all the pairwise RV coefficients.

RVM 5
2

kðk2 1Þ
Xk21

i51

Xk

j5i11

RVði; jÞ (12.7)

where k is the number of subsets of landmarks and RV(i,j) is the RV coefficient for the sub-
sets i,j. Just like the pairwise RV, the multiset RVM coefficient can be tested against the
null hypothesis that the modules are independent, providing a test of overall integration.
The test is done by computing RVM for the hypothesized modules after which the land-
marks of all but one subset are randomly permuted (and re-superimposed if the analysis
is done using simultaneously superimposed landmarks).
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Minimum Deviance Method

The second method assesses the goodness-of-fit of a model to the observed covariance
matrix. This method, introduced by Marquez (2008) and subsequently modified to
improve the assessment of relative fit (Parsons et al., 2012), is implemented in Mint
(Marquez, 2012). As outlined briefly above, the expected covariance matrix is modeled by
placing modules into orthogonal subspaces, one per module. This is done by making as
many copies of the data as there are modules, and assigning a value of zero to the coordi-
nates that do not belong to the hypothesized module. For example, given the hypothesis
that the front and back are two modules, with landmarks 1, 2, 3, 4, 5, 6, 7 and 13 in the
front and landmarks 8, 9, 10, 11, 12, 14 and 15 in the back, we would make two copies of
the data and arrange them in the extended matrix of the Front/Back Model:

Front=Back Model5
1 2 3 4 5 6 7 13
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
8 9 10 11 12 14 15

� �

Each of the numbers represent the x and y (and, if present, z) coordinates for that
landmark. The values for the coordinates that belong to a module are taken from the data.
The values for the coordinates that do not belong to the model are fixed to 0, 0. Before
assessing the fit of the model, the matrix predicted under the model (e.g. Front/Back
Model) is superimposed. The procedure is somewhat more complicated when the hypoth-
esis predicts that some landmarks belong to two or more modules; the modules then par-
tially overlap each other hence the subspaces are not orthogonal to each other and the
variances of the overlapping landmarks must be allocated to multiple modules without
altering the overall value of the variance. As currently implemented in Mint, the variance
of the landmark’s coordinates is equally partitioned across all the modules that contain
that landmark.

The fit of the model to the data can be assessed by several metrics (and Mint offers
three). We describe only one of them, the one that is fully standardized to allow for com-
paring results across data sets and also for assessing the relative fit of models that differ in
the number of modules. This goodness-of-fit statistic is γ:

γ5 traceððS2 S0ÞðS2S0ÞTÞ (12.8)

where S and S0 are the observed and expected (modeled) covariance matrices, respectively
(Richtsmeier et al., 2005). For example, in the case of the Front/Back model, S0 is the
covariance matrix of the Front/Back Model. To make it comparable across data sets, γ is
scaled by its maximum value, γmax, by dividing γ for each model by γmax, which is com-
puted by comparing the data to the null model of “no integration”. That null model is a
diagonal matrix that has the variances of the coordinates along the diagonal and zeros for
all the off-diagonal elements, which are the covariances. The second scaling step removes
the dependence of γ on the number of fixed parameters (the landmarks whose coordinates
are fixed to zero by model). This makes γ comparable across models that differ in the
number of fixed parameters. The scaling is done by regressing the value of γ on the
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number of zeros within each model because γ is linearly related to the number of zeros.
The residual from that regression, γ*, can then be compared across models. When the
model predicts that the covariances are zero and the observed values are indeed low,
γ*, 0; conversely, when the model predicts that the covariances are zero but they are actu-
ally high, γ*. 0. Because this scaling step uses a regression, the method benefits from fit-
ting many models to the data.

When testing model(s), the null hypothesis is that the difference between the observed
and expected covariance matrices is no greater than expected by chance. A low probability
means that the model does not fit the data. The test is done by comparing the observed
value of γ* to the range of values that could be obtained when the null hypothesis is true.
To obtain the distribution of γ under the null hypothesis, the modeled covariance matrix
and sample size are used to parameterize a Wishart distribution, which is the distribution
of covariance matrices of a multivariate normal population (Wishart, 1928). The value of
γ* is calculated between each randomly drawn matrix and the expected matrix. The proba-
bility that the model differs from the data by no more than expected by chance is calcu-
lated from the proportion of cases in which the value of γ* (computed by comparing the
model to randomly drawn matrices) is larger than the observed one. Thus, a p-value of 0.9
means that in 90% of the cases in which the model is compared to random matrices, γ* is
larger than it is when the model is compared to the data.

When comparing multiple models, the best-fitting model is the one with the lowest γ*.
Multiple models, however, might be nearly equal in γ* and all might fit well. All the
expected covariance matrices might deviate little from the observed one. Then, the prob-
lem is to decide which model fits best. In principle, this can be decided by which has the
lowest γ*, but we may not be entirely confident either in γ* or in its rank because both
depend on the sampling of the observed covariance matrix. Before deciding that one of
the models fits best, we want to be confident in the ranks of the models. To that end, we
can resample the covariance matrices and rerun the analyses for each sample, calculating
the number of runs in which the ranking is the same as we obtained for the observed
covariance matrix. As implemented in Mint, the resampling is done by jackknifing the
data, leaving out a proportion of the sample, refitting the model to the data, recalculating
γ* and the ranks of the models at each iteration.

Distance-Matrix Method

This method for analyzing modularity using correlations between pairwise Procrustes
distance matrices was introduced by Monteiro and colleagues (Monteiro et al., 2005,
Monteiro and Nogueira, 2009). As briefly outlined above, this method produces a correla-
tion matrix from the matrix correlations between pairwise Procrustes distance matrices.
Those Procrustes distance matrices preserve the information about the structure of varia-
tion within each module. If the analysis is done using Procrustes distances calculated sepa-
rately for each module, the only information retained is the correlations between the
shapes; any information about the relationships between the relative sizes and positions of
the modules within the whole is disregarded. That is the procedure implemented in
Coriandis (Marquez and Knowles, 2007). But it is possible to retain the information about

3. APPLICATIONS

383PREDICTING THE STRUCTURE OF COVARIATION: MORPHOLOGICAL INTEGRATION AND MODULARITY



the relative sizes and positions of the modules by not superimposing the modules sepa-
rately after subdividing the subsets of landmarks. Rather than computing Procrustes dis-
tances, we can instead calculate Euclidean distances between each pair of individuals for
each module (implemented in an R script in the workbook accompanying this text). Given
those distance matrices, we can then calculate the correlation between each pair, which
tells us whether variation in shape shows the same pattern for both modules. For example,
if individuals who are most different from each other in the shape of one module are also
most different in the shape of the other module, and those who are most similar to each
other in the shape of one module are also most similar to each other in the shape of the
other module, the correlation between the modules will be high. Should individuals who
are most similar to each other in the shape of one module be the least similar to each other
in shape of the other, the correlation will be high but negative. The correlation will be near
zero when similarities among individuals in shape of one module do not predict similari-
ties in shape of another module.

An important difference between this method and the other two that were introduced
above is the treatment of correlations within modules. Using the present method, those
intramodular correlations are not assessed � only the correlations between modules enter
into the analysis. To overcome that limitation, each putative module can be subdivided
into two or more parts, and the correlations between the parts of a module can then be
assessed relative to the correlations between modules (Zelditch et al., 2008, 2009).
However, if those correlations are included in the analysis, the strength of the intramodu-
lar correlations is not taken into account when analyzing the correlations between mod-
ules. In effect, the hypothesized intramodular correlations are treated no differently than
the hypothesized intermodular correlations.

Once we have the correlation matrix we can analyze it by any of the methods con-
ventionally used for testing hypotheses of morphological integration and modularity
(Cheverud, 1982; Cowley & Atchley, 1990; Cheverud, 1995; Herrera et al., 2002; Young &
Hallgrı́msson, 2005). One method for assessing a hypothesis of modularity is to predict
that the correlations between modules are zero, allowing the intramodular correlations to
be estimated from the data. The question is whether this model fits the data. We can com-
pare this to a model that fits the data perfectly and contains no fixed values. This model
is usually termed the “saturated model”, which can be represented as a graph in which
the nodes are the subsets of landmarks and the edges between them are the correlations
between the subsets and all the nodes are connected to all others (Figure 12.16).
Figure 12.16 shows the saturated model for 12 subsets because the hypothesized modules
were divided into two parts, whenever possible. Our objective is to reproduce the
observed correlation matrix using as few edges as possible. To assess the fit of the model
that includes only some of the edges relative to this saturated model, we use a measure
of the deviance (D) between the models (Box, 1949; McCullagh & Nelder, 1989). D is22 times
the log-likelihood ratio of the model being tested compared to the saturated model:

DðyÞ52 2ðlogðpðyjθ̂oÞÞÞ2 logðpðyjθ̂sÞÞ (12.9)

where θ̂o are the fitted parameters of the model being tested and θ̂s are the parameters of
the “saturated” model, the one shown in Figure 12.16. D is approximately distributed as a
chi-square with degrees of freedom equal to the difference in the number of parameters in
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the two models. The saturated model has zero degrees of freedom, so the degrees of free-
dom for the chi-square are the number of fixed parameters in the model.

Models that contain few fixed parameters are likely to fit well, so we are looking not
only for a model that fits well but one that fits well using as few edges as possible. When
models are nested, meaning that one model is included within the other, we can compare
the two by the chi-square difference test, subtracting the chi-square of the more complex
model from that of the simpler model, and also subtracting the degrees of freedom of the
more complex model from those of the simpler model. The resultant Δchi-square is dis-
tributed as a chi-square with the degrees of freedom given by the difference in degrees of
freedom of the two models. If statistically significant, the more complex model improves
upon the simpler one. When models are not nested, we need an alternative approach for
judging the relative fit of two models. One is to use the Akaike Information Criterion
(AIC), ranking models by their AIC. The AIC was introduced in Chapter 11, but we sum-
marize it here for purposes of convenience. AIC is a function of the log-likelihood of the
parameters given the data and the number of parameters in the model (Akaike, 1974), cal-
culated as:

AIC5 2k2 2lnðlikelihoodÞ (12.10)

where k is the number of parameters in the model. To compare models, we can compute
the difference in their AIC (ΔAIC).

We can also use exploratory methods to find the model that reproduces the observed
correlation matrix using as few edges as possible. Alternatively, we can search for a model
that reproduces the inverse correlation matrix, which gives the pairwise correlations hold-
ing all other variables constant. When the analysis is done using the inverse correlation
matrix, the models are usually termed “Gaussian graphical models” and the search for the
best-fitting model is called “concentration model selection”. When the models are instead

FIGURE 12.16 The saturated model.
This model fits the data perfectly because
all the edges are free parameters, esti-
mated from the data. Its deviance is there-
fore zero and it has zero degrees of
freedom. This is the null model; the objec-
tive of the analysis is to reproduce the
observed covariance with as few edges as
possible.
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fitted to the correlation matrix, the models are termed “covariance graphical models” and
the search for models that reproduce the correlation matrix is termed “covariance model
selection”. Using the inverse correlation matrix has the advantage that it allows us to test
for the conditional evolvability of modules; the use of covariance graphical models for
studies of morphological integration and modularity was recommended by Magwene
(2001). But, for purposes of comparison with the other two methods, when we apply this
method to our data, below, we will fit the models to the correlation matrix and do an
exploratory analysis using covariance model selection.

An alternative method for testing hypotheses of integration and modularity is to
construct the expected correlation matrix by predicting correlations of either zero or one
between traits according to whether they belong to different or the same module (Wagner,
1988; Kingsolver & Wiernasz, 1991; Cheverud, 1995; Hallgrı́msson et al., 2004; Young, 2004).
We do not anticipate that correlations will typically be either zero or one, but the compari-
son between the observed and expected matrices is done by computing the matrix correla-
tion between them (which is tested by a Mantel test). The matrix correlation will be high
if the matrices are proportional to each other so it is the pattern of relatively high versus
relatively low correlations that is tested. In the case of the Front/Back model, we would
predict the correlation matrix shown in Table 12.4. When comparing the hypothesized to
observed matrices by the Mantel test; we would randomly permute the rows and columns
in one matrix and compute the correlation between matrices at each for each permutation.

TABLE 12.4 Correlation Matrix Among Six Partitions of the Mandible Predicted by the Front/Back
Hypothesis

IncD IncP Molar RamusD RamusP CorD CorP CondD CondP Cond AngD AngP

IncD 1 1 1 1 0 0 0 0 0 0 0 0

IndP 1 1 1 1 0 0 0 0 0 0 0 0

Molar 1 1 1 1 0 0 0 0 0 0 0 0

RamusD 1 1 1 1 0 0 0 0 0 0 0 0

RamusP 0 0 0 0 1 1 1 1 1 1 1 1

CorD 0 0 0 0 1 1 1 1 1 1 1 1

CorP 0 0 0 0 1 1 1 1 1 1 1 1

CondD 0 0 0 0 1 1 1 1 1 1 1 1

CondP 0 0 0 0 1 1 1 1 1 1 1 1

Cond 0 0 0 0 1 1 1 1 1 1 1 1

AngD 0 0 0 0 1 1 1 1 1 1 1 1

AngP 0 0 0 0 1 1 1 1 1 1 1 1

IncD: distal incisor partition; IncP: proximal incisor partition; Molar: molar incisor partition; RamusD: distal horizontal ramus

partition; RamusP: proximal horizontal ramus partition; CorD: istal coronoid process partition; CorP: proximal coronoid process

partition; CondD: distal condyloid process partition; CondP: proximal condyloid process parition; Cond: condyle; AngD: distal

angular process partition; AngP: proximal partition of the angular process. See Figure 12.20.
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These two approaches to assessing the fit of a model to data can lead to conflicting
results because the model deviance increases when the predicted zero correlations are
actually high but not when the predicted high correlations are actually low. That is
because the predicted zero correlations are fixed to zero whereas the predicted high corre-
lations are estimated from the data. The consequence of erroneously predicting a high cor-
relation is to use up a degree of freedom unnecessarily. A matrix correlation, however, can
decrease when observed correlations are either lower or higher than predicted.

Examples: Evaluating Four Hypotheses of Mandibular Modularity

The first model that we will test is the Front/Back model (Figure 12.17A). The other
three are derived from developmental biology. We select these four from the large array of
hypotheses that could be derived from developmental biology and functional morphology
because all four can be tested by all the methods. Additionally, three of the models are
compatible with each other but the fourth is not compatible with any of the others. One
developmental model is based on a proposal by Fish and colleagues (2011) that the Satb2-
positive cell population is a developmental (and macroevolutionary) module. Fish and col-
leagues propose that the mandible can be divided into four modules, identifying them
with skeletal units. One corresponds to the “Back” of the Front/Back model, the other
three are subdivisions of the front into three modules. One of these is the small distal
region that gives rise to the mandibular symphysis, the second is the incisor alveolar mod-
ule and the third the molar module, which includes the molar alveolus and the portion of
the ramus ventral to that (Figure 12.17B). The second model derived from developmental
biology (Figure 12.17C) contains the three Front modules of the Satb2 hypothesis, adding
one to the back, corresponding to the expression domain of goosecoid, which has also been
proposed to be a developmental module (Gaunt et al., 1993). The fourth hypothesis
(Figure 12.17D) is the one proposed by Atchley and Hall (1991), who regarded mesenchy-
mal condensations as the basic units of mandibular morphogenesis and condensations
have been explicitly identified as modules (Hall and Miyake, 2000; Hall, 2003). This one

FIGURE 12.17 Four hypothe-
ses of mandibular modularity. (A)
Front/Back model; (B) Satb2
model; (C) Satb21Gsc model; (D)
Condensation model. The black
lines show the subdivisions
between the modules.
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differs from the others because there is no division of the front from the back, and there is
a division between molar alveolus and ramus. There are six modules because six conden-
sations give rise to the structures of the adult mandible (the seventh gives rise to the tran-
sitory Meckel’s cartilage and the symphyseal region). The six modules are the incisor
alveolus, the molar alveolus, the horizontal ramus (which crosses the boundary between
front and back), and three modules corresponding to the three proximal processes (coro-
noid, condyloid and angular).

To test these four hypotheses of modularity, we use a simultaneous superimposition
method because all the methods can analyze simultaneously superimposed data; Mint can-
not analyze separately superimposed data because that would force the analysis to focus
solely on the between-modular associations, i.e. on whether the covariances between mod-
ules are low enough to justify the conclusion that they are indeed modules. Second,
because the mandible serves a mechanical function, the relative sizes and positions of its
parts are functionally important.

“Minimum Intermodular Covariance Method”

The Front/Back model can be tested by the RV coefficient because it contains only two
modules. The RV for this hypothesis is a moderately high 0.445 and it is highly statistically
higher than expected by chance. Nevertheless, when tested using a large sample of ran-
dom permutations (restricted to contiguous partitions with the same number of landmarks
as contained in the hypothesized modules), none had a lower value. The distribution of
the RV coefficient (Figure 12.18) including this one and the 10 000 random alternative par-
titions suggests that the alternatives vary little in RV and none of them differ much from
the observed value. This is not surprising because the precise dividing line between the
modules is biologically ambiguous (between which ventral semilandmarks should we
divide the front from the back?). Many alternatives might be consistent with the biological
hypothesis rather than conflict with it.

The remaining models are tested with the multiset RVM coefficient. The RVM for the
Satb2 hypothesis is moderately high 0.327, although lower than the RV for the Front/Back
model. It, too, is the lowest in the distribution that includes it and RVM of 10 000 random
alternatives. The third hypothesis, Satb21Gsc, yields a lower RVM of 0.290, but it is not
clear whether this lower value indicates a better-fitting model or is an artifact of the larger
number of modules. The RVM of this model is also the lowest in the distribution that
includes it and 10 000 random (contiguous) alternatives. The Condensation hypothesis
yields an RVM of 0.230, which is the lowest of the four, and is also lower than all the
values obtained by 10 000 random permutations.

“Minimum Deviance Method”

The rankings of the four models are shown in Table 12.5. These agree with the rankings
based on the RV and RVM. The best fitting is the Condensation model, which is ranked
first with 100% jackknife support, followed by the Satb1Gsc model, which is consistently
the second best, followed in turn by the Satb2 model, which is consistently the third best,
and then by the Front/Back model, which is consistently the worst. The difference
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FIGURE 12.18 The distri-
bution of the RV for the model
and 10 000 randomly selected
alternative subdivisions of the
mandible into two parts hav-
ing the same numbers of land-
marks within each partition as
contained in the model.

TABLE 12.5 Results of the Minimum Deviance Method for the Four Models of Mandibular Modularity
Shown in Figure 12.16

Hypothesis γ* p-Value Rank Jackknife Support

Null 0 0 5 100%

Front/Back 20.2628 1 4 100%

Satb2 20.2909 1 3 100%

Satb2/Gsc 20.3217 0.999 2 100%

Condensation 20.3522 0.388 1 100%

Shown are the measures of deviance scaled by the number of fixed parameters, γ*, p-values for the null hypothesis that the

difference between the modeled and observed covariance matrices is no greater than expected by chance, the ranks of the four

models (with 1 being the best fitting and 5 being the worst fitting) and the jackknife support for the ranks.
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between the models appears very small, so it is not clear whether the best is all that much
better than the worst. However, we can evaluate these models against a much larger array
of alternatives by constructing new models by mixing the modules proposed by the
hypotheses into new combinations. When assessed in light of the 792 possible combina-
tions, some of which differ only by the landmarks marking the ramal boundaries, the
Condensation model is not the best of all the models. Instead, it ranks 16th. The next best
fitting of the developmental models, the Satb21Gsc model, ranks 203rd and the Satb2
model ranks 363rd; the Front/Back model ranks 488th.

The best-fitting model of the 792 contains four modules, (Figure 12.19A), the small dis-
tal region of the mandibular symphysis, the molar alveolus, and the three proximal pro-
cesses (coronoid, condyloid and angular). For this model, γ*520.3656. It contains four
modules of the Condensation hypothesis, but contrary to that hypothesis (and consistent
with the Satb2 and Satb21Gsc models), it divides the incisor alveolus into two parts. The
next best-fitting model (γ*520.3635) differs from the best by including the horizontal
ramus as a module.

Distance-Matrix Method

To examine the integration within modules as well as between, we subdivided each
hypothesized module into two parts, whenever possible, producing 12 partitions (the

FIGURE 12.19 The two best models found by
mixing the modules contained in the four a priori mod-
els. (A) Model ranked 1st; (B) model ranked 2nd.
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molar alveolus could not be subdivided because it contains too few landmarks, and the
condyloid was divided into three parts, one of which is the condyle). Three of the models
fit equally well based on their nearly equal ΔAIC; the only one that we could at least ten-
tatively reject from further consideration is the Satb2 model (Table 12.6). We appear to get
more resolution using the correlation between the observed and expected correlation
matrix; based on this statistic, the Condensation and Satb21Gsc models fit best, followed
by the Front/Back and then by the Satb2 model (Table 12.7). But it is not clear if this
greater resolution is an artifact of the test statistic.

Covariance model selection was used to find the model that least deviates from the
data; i.e. the criterion used to select the best model was minimum deviance rather than a
minimum AIC. The search was conducted in a stepwise fashion by adding or deleting an
edge one by one, in random order, until no further changes improved the fit of the model.
This search produced the model shown in Figure 12.20, which resembles none of the a
priori models. It also does not resemble the best-fitting model produced by mixing the
modules contained in the a priori models. What the present result suggests is that parts of
the hypothesized modules are integrated with parts of other modules. For example, the
distal incisor alveolus (but not the proximal incisor alveolus) is integrated with the distal
ramus and the distal coronoid process. The result does not support the hypothesis that
mandibular variation is structurally modular.

TABLE 12.6 Results of the Models Fitted to the Observed Correlation Matrix, Obtained by the Matrix
Correlations Between Distance Matrices

Model χ2 df p ΔAIC

Front/Back 22.58 32 0.891 2 41.43

Satb2 37.57 37 0.443 2 36.42

Satb21Gsc 62.69 51 0.126 2 39.31

Condensation 82.11 61 0.037 2 39.89

Models are evaluated by the model deviance, which is approximately distributed as a chi-square (χ2). The relative fit of the

models is assessed by the ΔAIC, which is the difference between the AIC of each model and the AIC of the fully saturated

model.

TABLE 12.7 Models Evaluated by the Matrix Correlation, RM, Between the Observed and Expected
Correlation Matrices; Statistical Significance of the Matrix Correlation Tested by the Mantel Test

Model RM p

Front/Back 0.291 0.031

Satb2 0.135 0.169

Satb2/Gsc 0.383 0.001

Condensation 0.392 0.003
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What Do We Do Next to Interpret These Results?

Some results are consistent across methods but others suggest that we need to consider
additional models. A consistent result is that the Condensation model fits better than the
Front/Back model, and two of the three methods find more support for it than for
Satb21Gsc model, which is more highly supported than the Satb2 model. But the explor-
atory results suggest that none of the developmental models predicts the variational archi-
tecture of the mandible. One obvious question is whether support for the unexpected
patterns seen in the exploratory results can be seen in the covariances of landmarks. In
particular, is there any support for the hypothesis of integration between distal incisor
alveolus and distal coronoid process? We could begin to answer that question by returning
to PLS, using the within-configuration method to look at the relationship between the front
and back (Figure 12.21). In that figure, we do see support for the covariance between distal
incisor alveolus, coronoid and angular processes, and perhaps also the molar alveolus. We
could pursue this further by finer subdivisions of the data, isolating the landmarks of the

FIGURE 12.20 The model with the lowest devi-
ance, obtained by covariance model selection.

FIGURE 12.21 Two-block within-configuration
Partial Least Squares Analysis. Shown is the dominant
axis of covariation between the two blocks, Singular
Axis 1, which accounts for 46.6% of the covariance
between the front and back of the mandible.
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two parts we wish to examine further and conducting a within-configuration PLS analysis.
Alternatively, or additionally, we could construct a model that allows spatially disjunct
regions to belong to the same module, and also allows for partial overlap between
modules.

The analysis of modularity does pose real challenges, but it is not because we lack
methods for analyzing modularity of shape data. Rather, it is because of the complexity of
patterns of covariance. As should be evident from this example, testing only one model is
not sufficient � had we tested only the Front/Back model, it would have been apparently
confirmed by all the methods. Each model yielded the lowest RV or RVM of all the models
to which it was compared and each deviated less from the data than expected by chance.
With the sole exception of the Satb2 model, which was rejected by one test statistic (the
correlation between the observed and expected correlation matrices), any of these models
would be confirmed by all three methods. Yet, the models do not fit equally well, and the
exploratory analysis raises the possibility that no modular structure fits the data as well as
a non-modular one. Thus, an important part of the hypothesis-testing strategy is to
consider multiple hypotheses, and to consider the possibility of integration without
modularity.
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C H A P T E R

13

Morphometrics and Systematics

Systematists use morphometrics to answer three types of questions. The first, which we
label “taxonomic”, asks whether samples are drawn from multiple taxa and, if so, by what
variable(s) they are most effectively discriminated. The second, which we label “phyloge-
netic”, seeks to identify traits distributed among taxa in patterns that may be consistent
with their phylogeny and then infer that phylogeny from a consensus of those traits. The
third, which we label “evolutionary”, seeks to describe the historical evolutionary transfor-
mations of the features of interest. These are all interrelated issues, but there are important
distinctions that bear on choosing appropriate analytic methods, and also on the suitability
of different kinds of traits or trait descriptions.

One critical distinction is between discriminators and characters. It might seem obvious
that taxonomic discriminators are potential characters because both are features that differ
among taxa, however, taxonomic discriminators are not characters because discriminators
describe the net difference between taxa; they are vectors extending between (or among)
terminal taxa. The vector describes the direction in which the taxa can be distinguished
from each other, regardless of whether the features distinguishing them are unique to one
species, are shared by a group containing two species in the analysis, or are more broadly
shared (with taxa not included in the analysis). That vector need not be aligned with a
direction of evolutionary change; all that matters is that the discriminator exists (telling us
that the taxa are indeed different) and is successful (allowing us to identify unknowns cor-
rectly). In contrast to a discriminator, a character is a feature shared by members of a
monophyletic group. In principle, a character is a feature that is recognized as transform-
ing at the node of a cladogram, and thus represents a hypothesis of the direction of evolu-
tionary change. If shapes could be measured at successive nodes, characters could be
found by simple pairwise comparisons between them, but samples of taxa at successive
nodes usually are not available and, even if they were, the fact that those taxa represented
nodes cannot be determined before reconstructing the cladogram.

Another critical difference between types of systematic questions is between identifying
shape characters and reconstruction evolutionary shape changes. As noted above, changes
in shape characters, traced on a cladogram, are intended to represent evolutionary
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transformations in shape. However, finding (and tracking) shape characters, and recon-
structing the evolution of shape, are different exercises. When looking for characters, par-
ticular features of the whole are selected as informative, making no effort to provide a
complete description of the changes in shape (or of the ancestral shape). Consequently,
characters usually comprise a subset of the features that evolve, and tracing characters on
a cladogram does not fully reconstruct the evolution of shape. For example, all members
of a particular group might have a shallow body compared to the other species, and “shal-
low body” is then selected as a character. But, no inference is made concerning amount of
change in body depth or how shallow their ancestor was, or what the ancestor’s head
shape was. In contrast, reconstructing the evolution of shape requires an inference of the
ancestral configuration of landmarks as well as the direction and magnitude of change in
the complete configuration along each branch.

Of the three types of questions, only those relating to taxonomic discrimination are so
straightforward that they require nothing more than standard morphometric tools. This
does not mean taxonomic discrimination is easy; on the contrary, it can be very difficult.
However, the difficulties of taxonomic discrimination pale in comparison to the problems
of finding characters or reconstructing the evolution of shape. Because taxonomic discrimi-
nation is a straightforward problem, our discussion of it focuses on some of the practical
issues that complicate its application to shape data.

The problems of evolutionary analysis, on the other hand, raise questions that are
largely outside the scope of morphometric theory. The methods used to infer evolutionary
transformations of shape either (1) minimize a distance or squared distance over the clado-
gram (which, in our case, would be a Procrustes distance); or (2) use an explicit model of
the evolutionary process and estimate values of the model’s parameters that maximize the
likelihood of the data, given the model (an accessible, general overview of these
approaches can be found in Felsenstein, 2002, and a discussion of them in context of geo-
metric shape data can be found in Rohlf, 2002). Whatever the model, when these methods
are used to infer shape evolution, the whole shape (the complete set of shape variables) is
always used. The primary issue facing users of these methods is to choose (or develop) a
realistic, justifiable model of shape evolution � a matter that involves considerations of
evolutionary biology rather than morphometrics. Accordingly, we do not discuss this topic
beyond a brief listing of the models that could be used.

Unlike the taxonomic and evolutionary questions, phylogenetic analysis using shape
continues to raise profound methodological questions with no satisfying answers. The cen-
tral problem is that there is no generally accepted method for finding characters in shape
data, and it is not even clear what a method of character discovery would look like. For
systematists, the lack of progress in this area since the first edition will mean that this
remains a disappointing chapter. However, we chose to use the opportunity of the second
edition to clarify some important points that we made in the first edition. The most impor-
tant of these is that decomposing shapes into variables that will be treated as independent
traits is a fundamentally flawed approach to inferring phylogenetic relationships from
shape data. It does not matter whether the decomposition is into partial warps or principal
components or any other means of defining vectors in a shape space or its tangent spaces.
This flaw lies at the heart of multiple methods of character analysis, including the
approach previously offered by us (Fink and Zelditch, 1995; Zelditch et al., 1995). The
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majority of this chapter focuses on this issue because understanding why a method fails is
as important as realizing that it does fail, particularly when the aim is to avoid making the
same kind of mistake again. Thus, we have kept this chapter in the second edition primar-
ily to make a stronger and clearer argument against the use of this and related methods
(see also Adams and Rosenberg, 1998; Rohlf, 1998; Adams et al., 2011).

TAXONOMIC DISCRIMINATION

The fundamental taxonomic question can be divided into two parts:

1. Are the samples different enough to warrant judging them to be different species?
2. In what do they differ?

(For the sake of simplicity, we focus on discriminating between species; however, com-
parable challenges may arise at any level of the taxonomic hierarchy.) To answer the first
part of the question, one must decide what would be “different enough”. Having stated
that criterion, it is possible to ask whether the data meet it. For example, “different
enough” might be that no more than 2% of the specimens are misclassified, or that the
means of the samples differ statistically significantly, or even that the Procrustes distance
between the means is minimally 0.03 (or any other favored value). Choosing a criterion
also determines which method will tell if the data meet it, which could be MANOVA,
CVA, computing Procrustes distances between means, or other valid method of evaluating
the difference between species.

The more difficult decisions that need to be made concern the handling of the various
potential sources of within-group variation, including geographic variation, ontogeny, and
sexual dimorphism. Any of these factors could complicate distinguishing species.
Obviously, you do not want to claim to have evidence for two species when the samples
differ only in average developmental age or body size. If that might be the case, it would
be useful to design the sampling scheme to ensure that the samples are homogeneous and
comparable, or else to standardize the data to a common age or size using regression. The
results can be very different. For example, Figure 13.1 shows results from three analyses:
(1) samples are compared without standardizing by ontogenetic stage (Figure 13.1A); (2)
samples are compared at a common juvenile stage (Figure 13.1B); and (3) samples are
compared at a common adult stage (Figure 13.1C). In all three analyses, all eight CVs are
significant and, with one exception (the unstandardized data), the misclassification rate
is extremely low. For the unstandardized data, out of 390 specimens as many as 12 are
misclassified, all of which are Pygocentrus nattereri that are classified either as P. cariba or
P. piraya. However, for both standardized data sets no more than four individuals are mis-
classified (also P. nattereri). Not surprisingly, all species differ from all others significantly
(in all pairwise comparisons, P , 0.002). In general, species differ by a Procrustes distance
of more than 0.030, except for the three Pygocentrus, whose adults differ from each other
by Procrustes distances as small as 0.027�0.028 (and by even less in comparisons of
unstandardized specimens). Thus, the same conclusion would be drawn from all three
analyses about the taxonomic status of these samples, but the results still differ because
the variables discriminating among the species are different.
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FIGURE 13.1 CVA of
body shape of nine species
of piranhas: (A) unstan-
dardized data; (B) data are
standardized and compari-
sons are made among
juvenile shapes (at the tran-
sition from larval to juve-
nile phases); (C) data are
standardized and compari-
sons are made among adult
shapes (at the maximum
body size regularly attained
by each species).
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After applying morphometric techniques to the data, there is still the problem of inter-
pretation. Even if the data meet the designated criteria, the samples might not come from
different species � they could come from geographically differentiated populations that
were sampled only at the extremes of their range (e.g. the most northern and the most
southern localities). Had they been sampled throughout the entire range, it might turn out
that there is no statistically significant difference between geographically adjacent popula-
tions. Conversely, they might not meet the criterion but, nonetheless, be distinct species; it
is just that the distinguishing features do not lie in shape. CVA provides a useful method
for discrimination, but finding that samples can be discriminated is only part of the
answer to the first taxonomic question.

As Viscosi and Cardini (2011) nicely demonstrate, structures that are repeated within
an individual, such as leaves on a tree, add even more layers of complexity to this prob-
lem. Variability of repeated structures is not just a concern of botanists; many animal taxa
also have repeated structures (e.g. eye facets, body segments, vertebrae), and colonial
organisms like bryozoans and corals also have repeated individuals. Not only might
repeated structures vary within an individual or colony, perhaps as a function of position
within the individual, the pattern of intra-individual variation might have an ontogeny of
its own. Intra-individual variation may also differ between individuals in response to all
the same factors that might account for inter-individual variation. Even with all these
potential layers, the question of “are species different?” still can be answered by well-
reasoned application of convention morphometric methods.

Although CVA can be useful for answering both the first part of the taxonomic question
(Are they different?), and the second part (In what are they different?), it is important to
bear in mind the limitations discussed in Chapter 6. Those limitations mean that the likeli-
hood that CVA will produce a discriminant function that is entirely an artifact of rotating
and rescaling the data increases with the number of variables. But rather than reduce or
eliminate semilandmarks and lose potentially informative shape data, cross-validation can
be used to confirm reliability of the discrimination. Indeed, cross-validation should be
used for large sets of landmarks even if no semilandmarks are used.

Whether taxonomic differences are discovered by CVA or other analyses, combinations
of shape variables may not be the most useful descriptions of those differences for the biol-
ogist comparing specimens in the field or in the museum. If it is intended to be useful for
field biologists, no purpose is served by writing a key that requires digitizing specimens,
entering their data in a CVA, and allocating them to species according to the discriminant
function. Although that could be considered a merely technological limitation, a taxonomic
key serves a pragmatic purpose and therefore must be useful. The key must be applicable
to the specimens in hand, under the conditions when they are in hand, while still account-
ing for potential sources of intraspecific variation. These requirements make writing a use-
ful key a challenging problem, but turning a geometric analysis into a useful key adds no
further difficulties. That can be done by using geometric morphometrics to determine the
shape variables that best discriminate, then translating them into terms of traditional mor-
phometric variables that can be measured with calipers or rulers. For example, if relative
body depth discriminates between species, two lengths can be calculated from the land-
mark coordinates; one for the depth measured between two landmarks (such as anterior
bases of the dorsal and anal fin), and one between the landmarks that capture standard
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length. That ratio does not fully describe the shape differences among species, but it
suffices to identify unknown specimens.

FINDING CHARACTERS

The use of morphometric data in phylogenetic studies has long been controversial.
Most often, debates among phylogenetic systematists have focused on two issues: (1)
methods for coding variables that overlap, sometimes considerably; and (2) the reliability
of the information obtained from the data for inferring phylogenies. Morphometric data
have been viewed with suspicion partly because it is difficult to determine where to draw
the line when there are no distinct gaps between the observed values. A wide variety of
techniques has been proposed and debated heatedly (see, for example, Colless, 1980;
Simon, 1983; Archie, 1985; Goldman, 1988; Chappill, 1989; Thiele, 1993; Swiderski et al.,
1998). Only very recently has the discussion begun to focus on a more fundamental prob-
lem: what to code? What is being extracted from the data and treated as a character?
Clearly, this issue must be addressed before the first one is even relevant; coding becomes
a moot issue if there are no characters to code, and if there are no characters, there is noth-
ing to test for homoplasy.

It is clear that partial warps should not be used as characters (for the reasons discussed
below), but it is not clear what ought to be used instead. It is not even clear that the prob-
lem has a solution. The major objective of the first part of this section is to define the prob-
lem we had hoped to solve using partial warps, then to explain why our approach was
flawed. In the next section, we discuss two alternatives; both rely on conventional multi-
variate methods, but neither is precisely tailored to the problem.

Defining the Problem

The general problem is to find features that differ among taxa and are shared by a sub-
set of them. The differences indicate evolutionary novelties and the similarities indicate
common ancestry, although it is not possible to determine which are novelties until the
phylogenetic analysis has been completed. You would not expect that an entire shape is a
character because species rarely have exactly the same shape (whether comparing the
whole organism or a single part); indeed, shape analysis is used precisely because shape
and its variation are complex. This suggests that if the problem is cast in terms of whole
landmark configurations, it will not be possible to make any progress. Yet, that is precisely
what the theory of shape demands of us; if we do not think of the problem in terms of
whole landmark configurations, we will be led to theoretically invalid solutions. This,
then, is the heart of the problem: to analyze entire configurations of landmarks and find
features that differ among taxa and are similar among a subset of taxa. Furthermore, to
say that a feature is a character, it is necessary to satisfy the criteria for recognizing phylo-
genetic or evolutionary homology, that is, to say where the feature is, and over how large a
spatial expanse it extends. A primary objection to traditional morphometric variables is
that they are lines, having no spatial extent as individual variables. Attempting to
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determine the spatial location and extent of a difference captured by these data, even
using multivariate analyses, uncovers one of the most severe limitations of traditional
morphometric data � their poor ability to localize morphological differences.

A further obstacle to finding characters in shape data is that neither the magnitude of
the difference, nor the magnitude of its spatial extent, are relevant to its utility as a charac-
ter. Small magnitude differences (so long as they are big enough to be considered a differ-
ence at all) count as much as large magnitude ones, and small-scale differences (such as
the tip of an appendage) count as much as large-scale ones (perhaps spanning the whole
organism). Consequently, neither the Procrustes distance between taxa nor the bending
energy of the transformation has any relevance to the problem. This is one of the reasons
why the problem is so difficult to solve � neither of the metrics used in geometric mor-
phometrics is germane to the problem, and if there is a relevant metric, it has yet to be
defined.

When we first approached this problem, we focused on one major limitation of conven-
tional (qualitative) approaches: that organisms are often dissected arbitrarily, along lines
of convention. Conventional anatomical subdivisions are often not biologically meaningful
except in the context of a particular problem. For example, if we are interested in locomo-
tion and foraging, we can subdivide an organism into parts that are used in locomotion
and parts that are used in foraging. Alternatively, if we are interested in development, we
can subdivide the organism into parts that have a common germ-layer origin, or that
develop from the same type of bone, or that undergo the same kinds of epigenetic interac-
tions, etc. These subdivisions have long been regarded as arbitrary, except to the extent
that they are useful in a particular investigation. These subdivisions often are not
suitable for dissecting an organism in systematic studies because what differs between
taxa may cross several such divisions, and may not be wholly within any them. Our goal
in using partial warps was to find a more objective basis for dissection. We did not suc-
ceed (for reasons discussed below), but the problem we defined remains a fundamental
and unresolved difficulty for character analysis. Our method had fatal flaws, but so do
others that require us to decompose the organism using biologically arbitrary mathemati-
cal rules.

The approach we took is similar to one that is standard in cladistic studies using mor-
phometric data. We defined a set of variables a priori, and compared taxa with respect to
them. A similar tactic is applied to conventional morphometric variables, when a set of
lengths or ratios is defined and measured on taxa, then the values of those lengths or
ratios is compared among the taxa. Most attention has focused on the problem of coding
those variables, but coding is the least of the problems. Such variables do not solve the
problems we had hoped to address, but share with them the flaw that we inadvertently
introduced: they score taxa on arbitrarily selected components of shape, one component at
a time.

Why Not to Use Partial Warps as Characters

Even though partial warps have a geometric scale, are a function of homologous
landmarks, and do not emphasize differences of large magnitude at the expense of
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small ones, they cannot be used as characters for at least two reasons. The first is
obvious (in hindsight at least): partial warps have a spatial scale only in so far as
spatial scale refers to the relative proximity of landmarks with the largest contrasting
displacements. In reality, every partial warp spans the entire organism and extends to
infinity as the implied deformation asymptotically approaches zero. Moreover, an indi-
vidual partial warp (PW) describes only part of a small-scale anatomical feature. No
matter how anatomically localized the change, its description by PWs will entail scores
on the largest scale PW that reflects the best fit of that PW to the data. Scores on pro-
gressively smaller scale PWs each reflect their fit to the difference between the data and
the sum of the higher scale PWs. Consequently, partitioning a change by PWs does not
correspond to partitioning it by anatomy or by characters. Even if a difference between
taxa did (fortuitously) closely match a single lower scale PW, its description would be
composed of scores on higher and lower scale PWs that represent that single, spatially
coherent change only when taken together. Furthermore, having a high score on a local-
ized PW does not mean that there is a localized change. Instead, it may simply mean
that in this particular region a large scale anatomical change is not well described by
the large scale PWs and the localized PW supplements that description. If the smaller
scale PW is taken out of context of the larger-scale PWs, we cannot make anatomical
sense of the one at smaller scale. Two taxa that have identical values for a small-scale
PW might differ anatomically in that same region because the differences between the
taxa cannot be seen without looking at all PWs.

All that may be obvious to readers who worked through the first several chapters, but
to clarify the point (and for those who jumped straight here) we can re-examine the exam-
ple that we found most promising at the time � the ontogenetic change in scores on one
PW (Figure 13.2). Two of the taxa, which were used as outgroups (Pygopristis denticulata
and Serrasalmus gouldingi), have statistically significant ontogenetic change on that PW (in
both X and Y directions), whereas the three Pygocentrus do not. We would not normally be
concerned about similarities among outgroups, but this example shows that similarities
implied by individual PWs are not found in complete descriptions. That P. denticulata and
S. gouldingi have anything in common in their development of that region is not at all
obvious when looking at more complete descriptions of the five ontogenies (Figure 13.3).
They are similar to each other, and differ from the three Pygocentrus, only in that they
undergo an ontogenetic change in the caudal peduncle region that is not fully described
by PWs at higher spatial scales. However, P. denticulata and S. gouldingi are not similar to
each other in the changes described by the higher spatial scales (and neither are the three
Pygocentrus). Being similar in one PW does not mean being similar in shape (or ontogeny
of shape) in a particular anatomical region. When looking at one PW we lose the context
supplied by all the others, and PWs are all context-dependent. Therefore, we cannot
describe what happens within any one region of the body without placing every PW in
context of every other. Even judged by what the method was supposed to do, it fails; it
does not provide an objective, non-arbitrary method for decomposing changes (except in a
purely geometric sense).

The second reason partial warps cannot be used as characters, which is related to the
one above but important in a broader context, is that interpretations based on individual
variables violate the fundamental principles of geometric shape analysis � that results be
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invariant to the selection of variables. A result that depends on using partial warps is
invalid (even if the phylogenetic inference based on it happens to be valid) because a par-
tial warp score is a single variable, a one-dimensional projection onto a particular basis
(defined by the reference shape), and our results cannot depend on that choice. Adhering
to this basic principle does not mean that our phylogenetic results will be invariant to our
choice of characters � the results of a phylogenetic analysis always depend on the charac-
ters. Rather, it means that our recognition of characters must be invariant to the selection
of variables � and for that reason, a morphometric variable cannot be a character in its
own right.

The obvious question is: how can we discover characters when we cannot look at indi-
vidual morphometric variables? If variables do not provide a legitimate basis for subdivid-
ing the organism, and if conventional anatomical lines of dissection are also viewed as
biologically arbitrary, then where can we look for characters? We end this section with
that question because we have no satisfying answer. In the next section, we discuss two
possible lines of attack. One uses a standard multivariate ordination method, principal
components analysis (PCA), to explore similarities and differences, the other uses pairwise
contrasts to find differences, which are then compared to find similarities among taxa in
their differences from others. Neither method is tailored to the problem, but both represent
feasible approaches that can be used in the interim, until we have a more satisfying
method.
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FIGURE 13.2 A single PW used to exemplify the procedure for finding systematic characters in ontogenies of
shape in Fink and Zelditch, 1995.
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P. nattereri

FIGURE 13.3 Ontogenies of
shape for the species analyzed
in Fink and Zelditch, 1995. The
inference drawn from the PW
shown in Figure 13.2 is that the
outgroup species P. denticulata
and S. gouldingi have a localized
ontogenetic change in the length
and depth of the caudal pedun-
cle relative to the region between
dorsal and adipose fins, whereas
the three Pygocentrus do not.
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Using PCA to Find Characters

PCA provides a coordinate system for shape analysis, and may be useful for finding
characters, but first we must state an important caveat: individual PCs (like individual
PWs) cannot be viewed as characters in their own right. Just as a partial warp score is a
projection onto a single axis, so is a principal component score, and just as a similarity on
one PW does not indicate a similarity in shape, similarity on a single PC might not demon-
strate a sufficiently general (or detailed) similarity. Like PWs, PCs are context-dependent,
and thus we would not expect an individual PC to be a character any more than an indi-
vidual partial warp is.

Despite the similarities we just pointed out, analyses by PC and PW are not strictly
comparable � there is a major difference between them. PCs are orthogonal directions of
variation rather than orthogonal components of bending energy, and variation is biologi-
cally relevant to the problem at hand while bending energy is useful only in that it is used
by the method for depicting the results. PCs have a biological meaning, as orthogonal
dimensions of variance, even though that is not equivalent to the meaning of a character.
They are not likely to be characters in their own right because they are directions of varia-
tion that are constrained to be orthogonal (by definition), not directions of evolutionary
change. Directions of evolutionary change are likely to be oblique to the PCs � they are
within the space spanned by the PCs, but they need not lie along an axis nor must they be
orthogonal.

Although PCs are not likely to be characters, we may still find PCA useful for exploring
similarities and differences. The scatter-plots allow us to see the variation among taxa, and
their overlap, and both are important for finding characters. However, just as we need to
interpret partial warps in combination, so we also need to interpret PCs in combination.
Just because two or more species overlap in their PC1 scores does not mean that they are
similar with respect to all features described by PC1. They may differ in some, so that PC1
splits the difference between them and the other PCs describe what is specific to their
deviations from PC1. Taxa located in different quadrants of a scatter-plot may differ con-
siderably in shape, depending on the proportion of the variance described by each PC and
on how the PCs overlap in their descriptions of variation within the same regions. For
example, we can look at a case that should be familiar by this point � the first two PCs of
piranha juvenile body shape. The first, which accounts for 62% of the variance, clearly dis-
tinguishes three species (S. manueli, S. elongatus and S. gouldingi) from all others
(Figure 13.4). Looking at the deformation that depicts the direction of greatest variance,
we can see that body depth contributes heavily to it. However, PC1 is not only body
depth; it also describes differences in proportions of the posterior body correlated with
body depth. Species with high scores on this axis have relatively long caudal peduncles
compared to the region between dorsal and adipose fins, as well as deep bodies, but we
cannot necessarily say that species with high scores on PC1 have long caudal peduncles if
other PCs also describe variation in posterior body proportions and scores on those PCs
differ among species with similar scores on PC1. PC2, which accounts for only 8.3% of the
variance, also describes variation in caudal body proportions and, on this component, spe-
cies with high scores have very short caudal peduncles relative to more anterior region.
Consequently, species with high scores on both components have a short caudal peduncle
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relative to other species with equally high scores on PC1. In effect, PC2 partially “compen-
sates” for PC1.

When interpreting PCs, it is also important to consider that they describe variation
around an average shape. However, the average is not a “typical” piranha; rather, it is the
shape of the consensus, the point having the coordinates 0, 0 (on all PCs). Obviously,
the consensus is not a typical piranha since there are no specimens at the 0, 0 point. The
outgroup (P. denticulata) is fairly near it, but if we want to describe differences between
P. denticulata and other species (or to make any other comparisons among species), we
cannot describe changes along one PC, then along another. The direction of the difference
between particular species is often oblique to several PCs.

The importance of considering scores on several PCs becomes evident when comparing
the three shallow-bodied species. All three have high scores on PC1, but they differ in
scores on PC2. One of the three, S. manueli, has high scores on PC2 (as do S. altuvei and
S. spilopleura). To see how S. manueli differs from S. gouldingi and S. elongatus with respect
to their differences from other taxa, we can draw the vector extending from those other
taxa, e.g. P. denticulata to S. manueli (Figure 13.5A) and to S. elongatus and S. gouldingi
(Figure 13.5B). The reason for doing this is to determine what differences from other taxa
are shared by S. elongatus, S. gouldingi and S. manueli. We will then eliminate from the
character the features peculiar to one species. Although we are making this comparison to
the outgroup, we are not assuming that it has the primitive body shape. Comparisons to
other species will also be necessary, and no decisions about polarity are made at this point.
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Pygocentrus cariba

FIGURE 13.4 Principal components of body shape of nine species of piranhas; data were standardized and
variation is examined among juvenile shapes (at the transition from larval to juvenile phases).
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Based upon the similarities between the two vectors (Figures 13.5A, 13.5B), what all three
taxa share is their shallow body. There also may be a second similarity not described by
either PC � a shortening of the mid-body relative to the head and posterior body. We
could include that in the description of the character, but we would exclude the propor-
tions of the caudal peduncle from that character description because S. manueli differs
from the other two species in that clearly, the character is not equivalent to a PC.

The reason for not treating PC2 as a character in its own right is the same as the one
we used to rule out treating individual PWs as characters. S. manueli, S. altuvei and also
S. spilopleura have high scores on this one, which primarily describes a displacement of the
opercle landmark towards the pectoral fin and a shortening of the caudal peduncle rela-
tive to the anal fin. However, S. manueli and S. altuvei differ along PC1 and are not similar
in caudal peduncle proportions; they also differ along PC3 (Figure 13.6). Differences along
PC3, as well as those along PC1, might belie the inference of morphological similarity
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P. nattereri

FIGURE 13.5 Analyzing direction in which species differ from P. denticulata in juvenile shape, to determine
whether species with overlapping scores on PC1, but different scores on PC2, are similar with respect to features
varying along PC1. (A) The direction of difference from P. denticulata to S. manueli; (B) the direction of difference
from P. denticulata to S. gouldingi and S. elongatus.
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implied by similar PC2 scores. Like PC2, PC3 accounts for only a small portion of the vari-
ance (5.6%), but like PC2 it describes a change in location of the pectoral fin relative to the
opercle. S. manueli and S. altuvei have the highest and lowest scores on PC3, respectively,
which means that their pectoral fins are displaced in opposite directions relative to the
opercle, which needs to be taken into account when assessing their similarity on PC2.
Despite their similar scores on PC2, a feature that might have been judged a morphologi-
cal similarity might not be similar by virtue of the differences along PC1 and PC3. Because
of their different scores on PC1, we would also avoid construing their caudal peduncle
proportions as similar, despite their similar values on PC2. Because species can be similar
along one component and differ substantially along others, we cannot interpret one
component at a time.

The strategy for combining PCs, outlined above, is undeniably tedious, but it might be
successful at finding the features shared by two or more taxa. In cases like our example,
when over 60% of the variation is along a single PC, two or more taxa have high scores
and two or more have low ones, and there is virtually no overlap among the low and high
scores, PC1 points to a character. When the variation is more evenly spread out across
components, it will be necessary to combine many more of them because similarities on
one may be outweighed by differences on the others. An obvious problem is that the com-
parison of vectors in a single plane, such as we used to compare the similarities among
the three shallow-bodied species with respect to their difference from the outgroup, exam-
ines only the differences among them that are in that particular plane. We might prefer to
look at all the differences between each species and the outgroup (or any other species
taken as a standard), comparing those vectors among taxa.
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FIGURE 13.6 Scatter-plot of PC3 on PC2, and the deformations depicting these two dimensions of variation.
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Using Comparisons Between Interspecific Vectors to Find Characters

The basic idea of this approach is to compare all species to one other species (which is
held constant). These pairwise contrasts can then be examined for similarities. By compar-
ing the differences between one species and each of the others, we can then inspect the dif-
ferences for similarities. The logic of the method is that we are looking for similarities in
the differences � i.e. similarities among taxa in features specific to them. To exemplify this
approach, we will continue the analysis of piranha juvenile body shape, comparing each
species to the outgroup (Figure 13.7). Of course, it is not necessary to use the outgroup in
these comparisons; any species could be used as that “other,” and it may be useful to use
more than one before drawing conclusions.

From these comparisons, it is obvious that S. elongatus, S. gouldingi and S. manueli are
shallow-bodied compared to all other piranhas. They differ profoundly from P. denticulata
in this, whereas none of the other species do. This is the feature that dominated the PCA
(and it is obvious by qualitative visual inspection as well). Additionally, these three

P. denticulata vs S. elongatus

P. denticulata vs S. gouldingi

P. denticulata vs S. manueli

P. denticulata vs S. altuvei

P. denticulata vs S. spilopleura

P. denticulata vs P. piraya

FIGURE 13.7 Pairwise comparisons between mean juvenile body shapes of P. denticulata and six other spe-
cies. Comparisons to P. nattereri and P. cariba are not distinct from the comparison to P. piraya.
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species have a relatively short mid-body relative to the more posterior body, a feature
hinted at but not so clearly presented when the vectors were drawn from P. denticulata to
the species in the PC1�PC2 plane (see Figure 13.5). This particular feature might reflect a
decrease in the length of the dorsal fin relative to the posterior body (dorsally) and the
posterior displacement of the pectoral fin and pelvic fins (rather than changes in propor-
tions of body between them). The three shallow-bodied species appear to vary in the
degree of “mid-body contraction”, but they appear to be consistently more contracted than
the others. The possibility that these three species are similar in having a relatively short-
ened mid-body is worth examining further because, unlike their shallow body, it is not
obvious from a purely qualitative analysis.

To pursue that possibility further, we can compare the vectors of pairwise contrasts to
each other, asking if a more contracted mid-body (compared to that of P. denticulata) is
characteristic of the shallow-bodied species but not of the others. This is done by subtract-
ing one of the pairwise vectors from another; where species are identical to S. gouldingi
(in the differences from P. denticulata) the grid is square (Figure 13.8). Large differences
indicate that the direction of change from P. denticulata to S. gouldingi is not shared
by another taxon. Subtracting each contrast from the contrast between P. denticulata to
S. gouldingi shows that S. gouldingi is not much shallower or deeper than either S. elongatus
or S. manueli. All three differ from P. denticulata by nearly the same degree, and in that
same direction. Some differences are evident in the relative length of the mid-body, how-
ever. The grid is slightly more contracted in that region, indicating that S. gouldingi is
more extreme than the others in that feature. However, the differences are slight. In strik-
ing contrast, the comparisons to the other species indicate not only that S. gouldingi is far
shallower than the others, but also that all differ from S. gouldingi in either the degree
or the location of mid-body contraction. We could either take these results to mean that
S. elongatus, S. gouldingi and S. manueli are all shallow-bodied and contracted in the mid-
body compared to the other species, or we could continue the analysis, doing additional
pairwise contrasts � this time between P. denticulata and S. elongatus, and also between
P. denticulata and S. manueli � to determine that all three species are similarly different
from the others. Of course, we would need additional comparisons to find features that
are more widely shared, or specific to some of the deeper-bodied species.

Unlike the shallow body, which is so evident visually that it requires no detailed
quantitative study, the mid-body contraction discerned in these comparisons is the kind of
subtle feature that justifies the effort of a morphometric analysis.

CODING

Having found a character, we can treat it like any other. That is, if using conventional
cladistic methods, we code the characters according to our preliminary judgments of
homology, include it in the data matrix, and analyze that matrix by parsimony. Coding
methods are a contentious subject; systematists vary considerably in their preferred criteria
for coding. The debates have nothing to do with morphometrics except to the extent that
the methods are applied to quantitative data, and that statistical methods are sometimes
favored to decide whether species are different (and should therefore not be coded as
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having a homologous character). The literature on coding is large; interested readers can
find general critiques of coding methods in several papers (e.g. Farris, 1990; Thiele, 1993;
Gift and Stevens, 1997; Swiderski et al., 1998).

Any favored method can be applied to a variable that represents a character. In the spe-
cial case where PC1 is a reasonable proxy of the character “body depth”, the favored
method can be applied to scores on PC1. It is not so easy to make decisions about charac-
ters that are combinations of several variables because it is not easy to examine the

P. denticulata vs S. gouldingi –
P. denticulata vs S. altuvei

P. denticulata vs S. gouldingi –
P. denticulata vs S. spilopleura

P. denticulata vs S. gouldingi –
P. denticulata vs P. piraya

P. denticulata vs S. gouldingi –
P. denticulata vs S. elongatus

P. denticulata vs S. gouldingi –
P. denticulata vs S. manueli

FIGURE 13.8 Comparisons among vectors describing the difference between P. denticulata and S. gouldingi,
and the vector describing the difference between P. denticulata and each of the other six species shown in
Figure 13.7. Each frame shows the contrast between the two vectors: where the squares of the grid are square, the
two vectors are the same; where the grid shows large differences, the difference between that species and P. denti-
culata does not resemble the difference between P. denticulata and S. gouldingi.

3. APPLICATIONS

415CODING



variation within species in more than two or three dimensions at a time, but doing so may
be important for deciding whether species are similar enough to code their features as
homologous.

The appropriateness of coding is, itself, a subject of debate. Not only are methods for
coding controversial, even the idea of coding is. As mentioned earlier in this chapter, there
are methods for inferring the evolution of shape that do not require coding characters.
Some apply the trait values themselves, without coding, in standard tree construction
algorithms (Farris, 1970; Goloboff et al., 2006). Others take a very different approach to the
problem. In particular, they do not make preliminary hypotheses of homology, then for-
malize them by codes, then infer the phylogeny that minimizes the net number of extra
steps (a step is considered “extra” if it means that a putatively homologous character is
reinterpreted as arising more than once). Instead, they use explicit models of the evolu-
tionary process, among which are:

1. Randomly varying directions of natural selection in different lineages
2. Random genetic drift of species around a single, stable optimum
3. Randomly wandering optima
4. Constrained wandering of optima
5. Wandering optima whose paths have a correlation that diminishes over time
6. Bursts of change around the time of speciation with little or no change thereafter.

(For a more detailed synopsis of the models, see Felsenstein, 2002.) Using one of these
approaches avoids the whole issue of coding, but instead requires one to confront the
problem of deciding which model is reasonable and justifiable. Such models have not
been widely used to infer cladograms from morphological data and, like the methods
which minimize a net morphometric distance (linear or squared) over a tree, model-based
methods might best be considered as methods for reconstructing the evolution of shape
given a cladogram.

SUMMARY

At present, no method is tailored to the problem of finding characters in morphometric
data, and the available methods are cumbersome and involve an uncomfortable degree of
subjectivity. Each could be improved by refining the part of the procedure that involves
making linear combinations of variables, such as combining PC1, PC2 and PC3 to see
whether similarities inferred from scores on one component are belied by scores on others.
However, rather than improving methods that were devised to use standard morphomet-
ric techniques, it might be better to start at the beginning and develop a method tailored
to our purposes. Doing so will require refining the statement of the problem. Currently,
we cannot state the problem in mathematical terms, and that is necessary before we can
find a mathematical solution. Our original statement of the problem focused on one partic-
ular element of it: finding characters without having to dissect organisms arbitrarily into
parts prior to the phylogenetic analysis. However, that dissection need not be an integral
part of a method for finding characters. We could instead use partial least squares analysis
(Chapter 7) to test the hypothesis that the blocks of landmarks do not covary; if they do
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not, we can analyze them separately. Even though PLS does not test the hypothesis that a
block constitutes an integrated unit, it may provide a more informed dissection than one
based purely on anatomical conventions.

Clearly, we need additional methodological research � we should not be limited to the
methods currently available when others are feasible. We also need to complement the
methodological investigations by a discussion of what our concepts mean. If we do not,
we may find that we have a rich array of methods that all do something interesting, but
none that do what we intended. It can be bewildering to read discussions about morpho-
metric characters, because it sometimes appears that nearly every author has a different
idea of the meaning of “character” (as well of “morphometric”). Until we can define “char-
acter” precisely, in terms just as comprehensible to mathematicians as to systematists, we
will not make further progress towards a mathematical solution. We also need more than
a definition of the term; we need to articulate more fully the process by which we find
characters, in general. Most discussions of systematic methods focus on how to analyze
the data, given the data matrix. Our problem is to get that matrix in the first place. One
value of morphometric data is that we find them using mathematical methods, and these
are necessarily explicit. By making our methods of character analysis explicit, just like our
methods of phylogenetic inference, we will enhance the rigor of morphological systematics
in general.
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Forensic Applications of Geometric
Morphometrics

In recent years, the forensic sciences have become enormously popular with the public
due to developments in DNA technology (Lempert, 1997; Lynch, 2003) its use in high pro-
file cases and the popularity of the CSI television series, which has raised public expecta-
tions of the performance of forensic sciences to the point that it has become a concern in
jury selection (Schweitzer and Saks, 2007). At the same time, there has been increasing
awareness of the tremendous variation in how forensic science is carried out in the USA
(National Academy of Science, 2009; Budowle et al., 2009). Some types of forensic science,
such as DNA and other chemical analyses, or methods from physical anthropology, are
based on large scale laboratory science outside the forensic community as well as exten-
sive use in the field by forensic agencies. Other areas of forensic analysis, including those
of bitemarks or footwear impressions, have been developed largely by forensic or clinical
practitioners based on clinical practice, case reports and anecdotal evidence. For these
areas of investigation, there is little evidence or background information drawn from
large-scale, systematic research projects and little involvement of scientists from national
laboratories or academic positions (National Academy of Science, 2009). Apart from DNA
and other chemically based analytic methods, a thorough knowledge of error rates and
repeatability in many forensic areas is often lacking (National Academy of Science, 2009).

There have been a number of high profile exonerations based on DNA evidence (see The
Innocence Project, www.innocenceproject.org, for examples). In addition to freeing a num-
ber of innocents, post-conviction DNA analyses have provided a one-time natural experi-
ment that permits the analysis of factors contributing to wrongful convictions overturned by
DNA. Several of the studies of these cases have indicated that errors in forensic science have
been prominent contributors to these wrongful convictions, perhaps partially because of the
high value placed on scientific evidence (Saks et al., 2000, 2001; Findley, 2002; Huff, 2004;
Risinger, 2007). The 2009 report by the National Academy of Sciences (National Academy of
Science, 2009) was a critical look at the practice of forensic science in the USA, prompted in
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part by these cases. One of the outcomes of the 2009 NAS report was a call for more outside
scientists to become involved in forensics, and for forensics workers to develop more con-
nections with the general scientific community. Given these current trends, and some of the
interesting questions posed in forensics, we chose to add a chapter on these topics.

In the forensic sciences, as in biology, anthropology and paleontology, there is much
interest in comparing the shapes of objects. There are several specific areas of forensics in
which morphometric methods, both traditional and geometric, have been applied. The first
is the biometry of human form, where morphometric methods have been used to identify
human remains and to estimate the age, sex and ethnic background of both pre- and ante-
mortem humans. They can also aid the diagnosis of developmental or cognitive disorders
which might be factors in sentencing. Non-invasive age estimation of living humans is cur-
rently of tremendous interest because immigrant and refugee policies in many countries,
differ according to the applicant’s age. Juveniles are often given a different, typically more
advantageous status in consideration of refugee status or eligibility for immigration and
social services (Solheim and Vonen, 2006; Crowley, 2007). Age estimation may also be a
factor in criminal cases because sentencing guidelines are usually different for adults and
juveniles. The second application of morphometrics in forensics is in the area of impres-
sion and pattern evidence. Impression evidence is created when two objects come in con-
tact forcibly enough to create an image or disruption of the distribution of material on one
or both objects, recording their interaction. Examples include fingerprints, palm prints,
tool-marks and footprints.

In this chapter, we will first look at a morphometric approach that retains size informa-
tion in the analysis (Procrustes Size Preserving, or Procrustes-SP). Next we will discuss
what it means to say that shape data from different sources “match” one another; which
differs from the usual concerns of biological studies with differences or variation. We will
then examine three research programs that have used geometric morphometrics to address
forensic problems in different areas and which also introduce new conceptual material.
The first of these programs focuses on forensic bitemark analysis, primarily on the issue of
variability in the anterior dentition as it is recorded in a bitemark. The question is whether
this is a unique identifier of an individual. Studies directed at answering that question use
the Procrustes-SP and Procrustes-based matching procedures. The second research project
uses geometric morphometrics to estimate the sex of an individual post-mortem; we
compare a discriminant function analysis with the k-means method of identifying group
membership based on shape data. The third project applies three-dimensional geometric
morphometric analysis to examination of human brain scans for evidence of Fetal Alcohol
Spectrum Disorder (FASD) in a forensic context. The FASD studies illustrate the use of rel-
ative eigenanalysis to allow classification based on excess variation (hypervariability)
within the FASD population relative to the normal population, and the use of likelihood
ratios to report the strength of forensic evidence in the courtroom.

SIZE AND SHAPE

In most biological applications of morphometrics, there have been efforts to separate
size and shape, and often to analyze shape independently of size. However, within the
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forensics community, size is viewed as an important part of the evidence. If the size of
two impressions are not consistent with one another, that serves as grounds to conclude
that the impressions arose from different sources (leaving aside the possibility that the
recording medium has shrunk or expanded). Thus, in forensics settings, there can be an
advantage to working with size and shape simultaneously. Dryden and Mardia (1992,
1998) developed distribution models using Procrustes shape variables and centroid size,
treated jointly in distribution functions, but as separate quantities. This approach (some-
times referred to as Procrustes Form Space) has been used in a PCA (Mitteroecker et al.,
2004), in which shape data and the log of centroid size were placed in a single data matrix
and analyzed.

An alternative approach to size and shape analysis is to superimpose landmark coordi-
nates of two or more configurations using only translation and rotation, but not using size
changes (scaling). This produces landmark coordinates with 2k2 3 or 3k2 6 degrees of
freedom, in superimpositions that could be called Procrustes Size Preserving (Procrustes-
SP, Bush et al., 2011a; Sheets et al., 2013). Suppose we have k landmarks in two dimensions
and want to superimpose the landmarks (xt1, yt1, xt2, yt2. . .xtk, ytk) of a target (t) specimen
on a reference (r) specimen (xr1, yr1, xr2, yr2. . .xrk, yrk) by translations along the x and y
directions (ax and ay) with a rotation through some angle θ. We can assume, without loss
of generality, that the reference specimen is centered on the origin (0,0) so that:

Xk

i51

xri 5 0 (14.1)

Xk

i51

yri 5 0 (14.2)

but note that the reference is not scaled to a centroid size of one. Rather, it is left in the
original measurement units. It is assumed that the target and reference are both measured
in the same units. If we translate and rotate the target specimen, the landmark points are
mapped to:

x0ti 5 ðxti 2 axÞcosðθÞ2 ðyti 2 ayÞsinðθÞ (14.3)

y0ti5ðxti 2 axÞsinðθÞ1ðyti 2 ayÞcosðθÞ (14.4)

We can then calculate the squared distance between the reference and the rotated and
translated target specimen:

D2 5
Xk

i51

ðxri2ðxti2axÞcosðθÞ1ðyti2ayÞsinðθÞÞ2 1 ðyri2ðxti2axÞsinðθÞ2ðyti2ayÞcosðθÞÞ2 (14.5)

Next we minimize this squared distance with respect to ax, ay and θ. This yields:

ax 5

Pk
i51 xti
k

(14.6)
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ay 5

Pk
i51 yti
k

(14.7)

which is simply the requirement that the target specimen also has a centroid at the origin.
The rotation angle becomes:

θ5 arctangent

Pk
i51ðyriðxti 2 axÞ2 xriðyti 2 ayÞÞ

Pk
i51ðxriðxti 2 axÞ1 yriðyti 2 ayÞÞ

 !
(14.8)

which is identical to the expression for the angle of rotation found for a Procrustes super-
imposition using translation, rotation and scaling.

When one specimen is superimposed on a reference using this Procrustes-SP superim-
position, the minimized squared distance between the target and reference is the squared
Procrustes-SP distance between them. The translated landmark coordinates produced by
this method may then be analyzed using multivariate statistical methods; bearing in mind
the issues posed by the degrees of freedom and the lack of an underlying statistical model
of the distribution of this type of variable. These limitations on this superimposition
method and the resulting coordinates and distance measure mean that statistical studies
that use the data obtained by Procrustes-SP methods should use tests based on permuta-
tion or other re-sampling methods, not analytic statistical models.

WHAT DOES IT MEAN FOR SHAPES TO “MATCH”?

One issue that arises in the analysis of pattern evidence is to determine whether one
item of such evidence (e.g., a bitemark, a tool-mark or footwear pattern) “matches”
another, so that the two patterns could have been produced by a common source (Bunch
et al., 2009). Careful thought is needed to decide what it means for two measurements to
match, whether those be traditional morphometric measurements, outlines, or landmarks
superimposed by Procrustes or Procrustes-SP methods. One approach is to start from the
premise that:

If the observed difference between two measured specimens is no larger than the difference observed
in repeated measurements of a single specimen, then there is no evidence that the two measured speci-
mens are different, and thus they may be said to match.

In all continuous measurements made of physical objects, there is always some level of
error or uncertainty, no matter how carefully it is measured. If we ask two people their
heights, and both answer honestly that they are 5 foot 10 inches (178 cm) tall, then we
would reasonably state that their heights are equal. However neither individual is likely to
be exactly 5 foot 10 inches. They are probably within a span of 1 or 1/2 inch (2.54 or
1.27 cm) of 5 foot 10 inches at any given time. The claim that their heights are equal is due
to our inability to measure a difference between them, given our measurement instru-
ments, not to there being no difference at all in their heights. The issue of individuation in
forensic science is surprisingly contentious (Saks and Koehler, 2008; Bunch et al., 2009;
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Cole, 2009), that of matching perhaps slightly less so, we therefore proceed based on the
simple discussion above.

In comparing two items of impression evidence based on shape, the first step is to
determine the level of variation present in repeated measurements of the same specimen.
A series of shape (or size and shape) measurements is made of a set of impressions pro-
duced by a single specimen. The variability within this set of repeated measures may be
characterized by the variance within the collection or by looking at the distribution of all
pair-wise distances between specimens in the repeated measurements group to develop an
estimate of a confidence interval of distances within repeated measurements. If the dis-
tance between two shapes (measured on different impressions) lies within this repeated
measures range of values, then there would appear to be little difference in shape, and
hence no reason to claim that the impressions could not be have been produced by a com-
mon source. Detection of the “match” is thus based on a failure to reject a null hypothesis
that the observed difference between the two arose from random variation in the measure-
ment process. Unfortunately, this leaves us in the rather precarious position of accepting a
null hypothesis, of simply stating that one cannot tell the objects apart.

Certainly we need to be cautious when taking this approach. For example, it may be
that virtually all the difference between two shapes is localized to one landmark, inducing
a Pinocchio effect. Because Procrustes methods tend to map variance across the whole con-
figuration, a substantial change at one location might be mapped onto smaller changes at
many landmarks. The result could be a distance between the two shapes comparable to
one observed in repeated measures even though a large excursion at just one landmark is
highly unlikely in repeated measurements. In such situations, Procrustes plots could be
examined to check that the distribution of relative shape changes across landmarks
produced by repeated measurements is consistent with the observed Pinocchio effect
difference.

Using Procrustes (or Procustes SP) distances in the match criteria, albeit subject to con-
cerns about the Pinocchio effect, allows for automated searches for matches in databases
of specimens. It is straightforward to compute the Procrustes distance between a given
specimen and all specimens in a database, and then to determine the number of matches
found, given the match criteria.

MATCHING SHAPES IN THE HUMAN DENTITION

Use of bitemark analysis in criminal cases arose out of the highly successful practice of
using dental records to identify the remains of individuals where extensive damage or
decomposition has made it difficult to establish identity. Bitemark analysis is used to
investigate particularly violent events, typically sexual assaults and child abuse, making
this application a highly sensitive topic, not only because false identifications could
imprison an innocent person, but also because a violent offender may be left at large. The
analysis of bitemarks yields a range of forensic information in these disturbing crimes, but
there are real concerns about its use as individuating evidence, i.e., as evidence uniquely
linking a suspect to a bitemark. The National Academy of Sciences report (2009) noted
that the unique association of a suspect with a bitemark requires that: (1) the human biting
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dentition must contain enough information to identify the suspect uniquely; and (2) the
information in the dentition must be faithfully recorded in the bitemark to allow successful
use of it as evidence.

In the effective post-mortem identifications, the forensic dentist often has access to
detailed x-rays of the entire dentition, as well as information about the location and nature
of dental work including fillings, root canals and bridges. This information is generally
accepted as unique and adequate to identify a specific individual, having a long and non-
controversial history of success. In contrast, in bitemark analysis, typically all that is avail-
able are impressions left by the incisal (cutting) surfaces of the twelve most anterior teeth in
the human dentition (i.e., the six most forward teeth of the upper and lower jaws). Thus, a
bitemark impression typically contains far less information than is available from all surfaces
and internal structures of the whole dentition (normally 28�32 teeth, 6wisdom teeth).

The study most often cited to support the claim of uniqueness of the portion of the
human dentition that creates bitemarks examined bitemarks in wax produced by 384 den-
titions (Rawson et al., 1984). In this study, Rawson et al. superimposed or registered all
the measured dentitions in a standard orientation, and then determined the x and y coor-
dinates of the midpoint of each tooth (to61mm) and the relative angular orientation of
each tooth within 62.5 degrees (see Rawson et al., 1984; or Bush et al., 2011b, for complete
details). Rawson et al. used a form of baseline registration that was fairly sophisticated for
1984, but not consistent with methods developed since then. From this information, they
calculated the number of possible states (or positions) each tooth position and angle could
occupy by the range of observed values divided by the measurement resolution. From the
very large calculated number of possible states, Rawson and colleagues concluded that the
human anterior dentition was effectively unique to individuals.

In reconsidering this work, Bush et al. (2011b) noted that the Rawson et al. model did
not include correlation among teeth and assumed uniform distribution models. Bush and
colleagues also noted that no attempt was made to search through the data to see if any
dentitions matched. When Bush et al. (2011b) searched their collected data, they found
matches between lower dentitions in relatively small data sets. Later, using two- and
three-dimensional geometric morphometric data, they looked for matches in collections of
measured human dentitions (Bush et al., 2011a,b,c; Sheets et al., 2011, 2013). In a later
study (Sheets et al., 2013), a collection of 1106 paired sets of three-dimensional scanned
maxillary and mandibular dentitions (upper and lower, respectively) were obtained from
a commercial dental laboratory, which had used these scans to produce occlusal guards
(night guards). The dental models were three-dimensional scans from private practice
patients across the USA. (All necessary Human Subject Institutional Review Board proto-
cols were completed for this project and exemption was granted and all patient identifying
information was stripped from the data). This was a sample of convenience that contained
a wide range of alignment patterns, from relatively straight to fairly mal-aligned. After ini-
tial matching studies, seven of these specimens were identified as being repeated scans of
the same individuals and removed from the study, leaving 1099 distinct individuals.

Landmarks were recorded on the three-dimensional scanned dentitions by placing 10
data points along the incisal edge of each of the six anterior teeth, using the digitizing
program Landmark (Institute for Data Analysis and Visualization, UC Davis, 2011,
Figure 14.1). The dentitions were rotated in three-dimensional space within the software
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while landmarks were being placed so changes in three-dimensional perspective could be
used to verify accurate placement. This resulted in a total of 60 points along the incisal
edges of the anterior teeth of both the maxillary and mandibular arches.

To determine the measurement resolution, the scans of three maxillary and three man-
dibular specimens were digitized ten times by the same operator, and the scatter of
Procrustes and Procrustes-SP distances for each specimen about the mean for that speci-
men was determined. This is an underestimate of the actual measurement error because it
does not include estimates of the contributions from the creation of the dental casts and
three-dimensional scanning. From the data of these distances, the average root mean
square (RMS) scatter of repeated measurement specimens was calculated. The RMS scatter
is analogous to a standard deviation, although it is not measured in the same way, nor
does it have the same statistical properties. However, experiments have found that
93�96% of repeatedly digitized specimens lie within twice the RMS scatter level.

In Procrustes units the RMS scatter in this data was 0.02 for both the maxillary and
mandibular dentition, so the matching criteria were twice this, 0.04. Because landmarks
are scaled to the centroid size, this measurement indicates that our typical error in measur-
ing all 60 landmarks was about 2% of the total size of the dentition. When using
Procrustes-SP methods, the RMS scatter per landmark point was roughly 0.2 mm, still
about 2% of centroid size, which is consistent with an approximate 1 mm width of the

FIGURE 14.1 Landmark and semilandmark placement on three-dimensional scans of a cast made of a human
dentition. Semilandmarks were placed along the occlusal surfaces of the six anterior teeth in the maxilla and
mandible.

3. APPLICATIONS

425MATCHING SHAPES IN THE HUMAN DENTITION



incisal edges. A maximum error of 60.4 mm per point would still leave each landmark on
the incisal surface in all cases. Of course there might also be a lateral component, a sliding
of points along the top margin of the tooth, that contributes to this RMS scatter. The RMS
scatter summed up over all 60 points (all six anterior teeth) in the mandibular dentition,
was 3.1 mm and 4.28 mm in the maxillary dentition. Thus, the net error was 2% of total
size. The substantial difference between the two dentitions is due to the increased size of
the maxillary structure. The error as a percentage of size was similar.

An initial determination indicated five matches based on Procrustes and seven matches
based on Procrustes-SP superimposition, but seven of the specimens in these matches
were the repeated scans of the same individuals. That inclusion of repeated measurements
provided an accidental, but meaningful, test of the effectiveness of the analytic method.
Interestingly, the scans of one particular individual were taken a year apart, and were still
within twice the range of the repeated measurements RMS scatter. Thus, the differences
due to events occurring over the intervening time, in addition to retaking the cast and
rescanning that cast, were still within the range of measurement error.

After removing the repeatedly measured individuals, the matching rates based on
Procrustes and Procrustes-SP superimpositions were determined. Match rates were much
higher for maxillary dentition than for mandibular, and for each jaw, they were higher for
Procrustes superimposed data than for Procrustes-SP. Considerably lower rates were
obtained when matches were sought between maxillary and mandibular sets (Table 14.1).
Based on the Procrustes-SP procedure, there were two matched pairs of different speci-
mens for a total of four individuals that were not unique (in only 1099). It is also
notable that the two pairs that matched using the Procrustes-SP were not the same indivi-
duals who matched using the Procrustes method.

The dependence of match rate on measurement error is summarized in Table 14.2. In
actual forensic cases, the information about the incisal edges will probably not be recorded
with a resolution as high as that obtained from the three-dimensional laboratory data, so
an alteration of the match rate is expected as measurement error increases. The level of
error in repeated measurements was known to be underestimated because error in the
casting and scanning operations was not included. Clearly, the rates of matches in this
large population increases rapidly as measurement resolution or repeatability decreases,
as represented by the increased RMS errors used to calculate this table.

TABLE 14.1 Match Rates in the Maxillary and Mandibular Dentitions, and in Both Combined, Based on
Procrustes and Procrustes-SP Superimpositions

Procrustes Procrustes-SP

Number of Matches Number of Individuals Number of Matches Number of Individuals

Maxillary 1691 487 763 396

Mandibular 129 131 75 83

Both 1 2 2 4

The matching criterion used was twice the RMS scatter of repeatedly measured specimens.
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The authors of this study interpreted the results to mean that the human anterior denti-
tion is not unique in an open population—the characteristics of the dentition are not gen-
erally suitable for uniquely identifying an individual. There is a tremendous amount of
work left to be done to understand the effectiveness of forensic bitemark comparisons, but
these results contradict the earlier claims of Rawson et al. (1984) and Kieser et al. (2007)
about the uniqueness in this portion of the human dentition.

SEX ESTIMATION IN A FORENSIC CONTEXT

Sex estimation of humans is of interest in many forensic contexts (Krogman and Iscan,
1986) as well as in anthropological studies. One classic approach to sex estimation in post-
mortem settings has been to examine the pelvic structure, particularly the sciatic notch, but
also the ischiopubic complex (MacLaughlin and Bruce, 1990; Bruzek, 2002). Approaches
have been based on qualitative statements about these structures, on traditional morphomet-
ric methods and on geometric morphometric methods (Gonzalez et al., 2009; Steyn and
Iscan, 2008). In the study carried out by Gonzalez and colleagues, a total of 121 human pel-
vic specimens were obtained from museum anthropological collections. The individuals
were of European ancestry and had been buried in the 19th and 20th centuries. Photographs
were taken with the camera oriented perpendicular to the largely two-dimensional plane of
the structures of interest: the sciatic notch and the margin of the ischiopubic complex. Two
landmarks and 14 semilandmarks were placed along the sciatic notch, with the landmarks

TABLE 14.2 The Dependence of the Number of Matches, and the Number of Individuals Matching in this
Data Set, Under Both Criteria, for the Maxilla and Mandible, and as a Function of Increasing RMS Scatter
Level, or Decreased Measurement Resolution

Fraction of RMS Scatter

100% 125% 150%

Number of

Matches

Number of

Individuals

Number of

Matches

Number of

Individuals

Number of

Matches

Number of

Individuals

Procrustes

Maxillary 1691 487 21358 873 85282 1007

Mandibular 129 131 3119 500 18543 769

Both 1 2 526 246 6826 579

Procrustes

Maxillary 763 396 9660 826 39854 1001

Mandibular 75 83 1658 451 9510 759

Both 2 4 166 144 2056 502

The percentages are of the actual repeated measure scatter, so 125% represents a 25% increase in measurement error (603 351

total comparisons, 1099 individuals).
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placed at the base of the ischial spine and the tip of the piriform tubercle (Figure 14.2). The
semilandmarks were placed along this arch using a “fan” guideline produced using the
MakeFan program. Similarly, two landmarks and 35 semilandmarks were used to capture
information about the ischiopubic region. One was placed at the intersection of the upper
edge of the pubis with the perpendicular line that reaches the uppermost point of the
obdurator groove. The second was placed at the intersection between the external margin of
the ischium and the inferior border of the acetabulum. Thirty-five semilandmarks were then
placed along the curve between these points. The placement of the first landmark on the
ischiopubic region was difficult in this study as it required an estimated location based on a
perpendicular line due to a lack of a clearly defined landmark in this region.

After landmark and semilandmark placement was completed, a semilandmark align-
ment procedure was done, using distance minimization on a mean form estimated using
Generalized Procrustes Analysis methods (which also iteratively estimates the mean). PCA
analysis of each data set showed substantial evidence of segregration of males and females
along the first axis (58.2% of variance in the sciatic notch data, and 56.9% of the variance
in the ischiopubic complex). These results were compared to those obtained from discrimi-
nant analysis and k-means clustering (MacQueen, 1967). Each of these analyses was
performed on the same shape data as the PCA and on a combined size1 shape data set
(Procrustes form space). For the discriminant analysis (similar to CVA, but with only a
single axis), correct classification rates were obtained using a resampling-based cross-
validation analysis. In the k-means clustering method, the specimens are divided into

FIGURE 14.2 Landmark and semilandmark placement
on the sciatic notch (a) and the ischiopubic complex (b)
(From Gonzalez et al., 2009).
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k groups a priori (k5 2 for sex estimation), the centroid of each group is determined and
each specimen is reassigned to the nearest centroid. Then an iterative process is initiated
in which a new group centroid is computed and specimens are re-assigned to the nearest
centroid. The process continues until group memberships and the estimates of the cen-
troids are stable. The resulting rate of assignments is assessed in the same manner as a
CVA or discriminant analysis.

The assignment rates for the Gonzalez et al. study are shown in Tables 14.3 and 14.4.
The overall cross-validation rates (frequencies of correct assignments) based on discrimi-
nant analysis of shape data only were 90.9% for the sciatic arch and 93.4% for the ischio-
pubic arch. The k-means rates were 90.9% and 90.1%. Females were misclassified slightly
more often than males using ischiopubic data in both methods of analysis; combining
ischiopubic and sciatic notch data yielded a slight improvement in classification rates for
the discriminant function but not for k-means clustering. In this last result, the misclassi-
fied females were the three youngest but the misclassified males spanned a wide range of
ages. Interestingly, including size in the analysis usually yielded worse cross-validation
rates (Table 14.4) indicating that size was not helpful in forming these classifications.

Classification rates based on visual scoring rubrics have been reported as ranging from
96% correct (Phenice, 1969) to 60�90% correct (Bruzek, 2002; MacLaughlin and Bruce, 1990).
Methods based on traditional morphometrics measurements have produced rates from 73%
to 79.1% (Patriquin et al., 2003; Steyn and Iscan, 2008). Because these rates are probably

TABLE 14.3 Rates of Correct Assignment of Specimens to Gender Based on Sciatic Notch and Ischiopubic
Complex Shape Using Discriminant Analysis and k-Means Clustering

Discriminant Analysis k-Means Clustering

Correct

Assignments

Incorrect

Assignments

Percent

Correct

Correct

Assignments

Incorrect

Assignments

Percent

Correct

Sciatic Notch

F 47 5 90.4 46 6 88.5

M 63 6 91.4 64 5 92.3

Total 110 11 90.9 110 11 90.9

Ischiopubic Complex

F 46 6 88.5 45 7 86.5

M 67 2 97.1 67 2 97.1

Total 113 8 93.4 112 9 90.1

Sciatic Notch & Ischiopubic Complex

F 49 3 94.2 46 6 88.5

M 65 4 94.2 65 5 94.2

Total 114 7 94.2 111 11 91.7

Data taken from Gonzalez et al. (2009), Table 2.
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somewhat population dependent, it is difficult to say with certainty that the geometric mor-
phometric approaches are superior; they are certainly on par with the best results reported
using the other methods, being perhaps less subjective (Bruzek, 2002) and more reliable,
given the difficulties with traditional measures noted by Steyn and Iscan (2008).

LIKELIHOOD RATIOS AND FETAL ALCOHOL SYNDROME

Fetal Alcohol Spectrum Disorders (FASD) are a complex set of developmental,
behavioral and anatomical disorders resulting from fetal exposure to alcohol. They encom-
pass Fetal Alcohol Syndrome (FAS), Fetal Alcohol Effect (FAE), and Alcohol Related
Neurodevelopmental Disorder (ARND). As with many multiple organ abnormality syn-
dromes, diagnosis is often based on subjective assessment of several features, with termi-
nologies that reflect the number of affected systems and the relative severity of
dysfunction. Medicolegal concern with FASD centers on the tendency of affected indivi-
duals to exhibit a variety of cognitive deficits, including poor memory, attention deficits
and impulsive behavior. Individuals with FAS have diminished executive functioning, a
deficit in the skills and capabilities needed to self-regulate in an appropriate, context-
dependent manner. These capabilities include planning, learning, processing sensory
input, decision making, and response inhibition.

TABLE 14.4 Rates of Correct Assignment of Specimens to Gender Based on Sciatic Notch and Ischiopubic
Complex Size and Shape Using Discriminant Analysis and k-Means Clustering

Discriminant Analysis k-Means Clustering

Correct

Assignments

Incorrect

Assignments

Percent

Correct

Correct

Assignments

Incorrect

Assignments

Percent

Correct

Sciatic Notch

F 46 6 88.4 45 7 86.5

M 63 6 91.3 64 5 92.8

Total 109 12 90.1 109 12 90.9

Ischiopubic Complex

F 39 13 75 49 3 94.2

M 53 16 76.8 67 2 97.1

Total 92 29 76 116 5 95.9

Sciatic Notch & Ischiopubic Complex

F 47 5 90.4 45 7 86.5

M 63 6 91.3 61 8 88.4

Total 110 11 90.1 106 15 87.6

Data taken from Gonzalez et al. (2009), Table 3.

3. APPLICATIONS

430 14. FORENSIC APPLICATIONS OF GEOMETRIC MORPHOMETRICS



It has been argued in court that FASD is similar in many ways to other neural deficits
(such as epilepsy) over which the sufferer has no control, and that the presence of FASD is
a factor both in the treatment of offenders with FASD, and where the victim of a crime
had FASD. Like other disabilities, individuals with FASD may have cognitive limitations
which make it difficult for them to participate effectively in their own criminal defense, or
which should be considered in the sentencing phase of a trial. Individuals with FASD may
also be less capable of dealing with social situations, making them more vulnerable to
some criminal acts. The vulnerability of persons with cognitive disorders is often taken
into account in sentencing when they are victims of crimes. For these reasons, it may be
important in a criminal case to determine whether or not an individual should be consid-
ered to have FASD.

Diagnosis of FASD in adults can be difficult, particularly if neither the mother nor
others who can testify about her alcohol consumption during pregnancy are available. In
such cases, diagnosis of FASD in an adult relies on physical measurements of facial fea-
tures and neuroanatomy, as well as behavioral and cognitive testing (Streissguth et al.,
1998). Information about the course of the individual’s life, such as participation in special
educational settings in school, may also be considered. In such cases, the diagnosis is often
based on a preponderance of evidence.

To assess neuroanatomical consequences of fetal alcohol exposure, Streissguth,
Bookstein and colleagues analyzed shape changes in the corpus callosum and other por-
tions of the brain (Bookstein et al., 2001, 2002a,b). MRI images of three-dimensional brain
scans were obtained from 180 subjects aged 14 to 37, with 60 individuals in each of three
categories: (1) those diagnosed with fetal alcohol syndrome (FAS), (2) those diagnosed
with fetal alcohol effects (FAE, i.e., having signs of neurological deficits but lacking obvi-
ous facial features required for diagnosis of FAS) (iii) and a control group of unexposed
normal individuals without other diagnosed cognitive or neurological abnormalities or
known history of fetal alcohol exposure.

Two data sets were used, one consisting of 12 landmark points along the mid-sagittal
plane and 8 bilaterally paired points in the human brain measured in three-dimensions
(see Bookstein et al., 2001 for details) and a set of mostly semilandmark measurements of
the corpus callosum, (the large white matter structure in the brain that coordinates com-
munication between the left and right cerebral hemispheres). One landmark was defined
on the corpus callosum: a sharp corner near its anterior end called the rostrum. Most of
the other landmarks were extremal points on recognized anatomical features � that is the
anterior-most or dorsal-most point on the structure. The semilandmarks on the corpus cal-
losum were digitized in three dimensions along a curve approximating its midline. This
curve was not defined by an external reference plane; instead each point was placed on
the surface in a position that appeared to be above (or below) the local plane of symmetry
of the structure (Bookstein et al., 2002a). The semilandmarks were then slid using bend-
ing-energy alignment. In the initial study (Bookstein et al., 2001) differences in amount of
asymmetry were a focus of analysis, so sides were not reflected and averaged, but this
was done for some analyses in later studies.

For both the brain landmarks and the corpus callosum semilandmarks, means of
exposed (FAS and FAE) individuals were not significantly different from unexposed (nor-
mal) individuals. However, there was a clear increase in variability (scatter) of exposed
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individuals about the mean. To characterize the elevated variability of the exposed popu-
lations and identify the most affected features, a relative eigenanalysis was performed. This
technique compares within-group covariance matrices, expressing dimensions of greatest
variability in one data set (here, the alcohol exposed population) as a multiple of the vari-
ance in the other data set (unexposed). When the data are shapes, the results can be used
to produce a picture that shows which regions are more variable and the direction of that
elevated variation. Because this study had more dimensions in either set of shape data
than individuals in any subject group, the analysis was restricted to a subset of dimen-
sions, the first 11 PCA axes. Relative eigenanalysis is similar to canonical variates analysis
(CVA) in some respects, but instead of computing axes of between group difference as
CVA does, relative eigenanalysis computes axes of within-group variance that are ampli-
fied in one group relative to the other.

The relative eigenalysis of the landmark data set indicated that the largest axis showing
increased variance in exposed individuals could be expressed in terms of length ratios
using only four anterior landmarks: the interior genu, the caudate, the rostrum and the
genu. This was using measurements taken from a baseline registration with the genu and
rostrum as endpoints. Scatter-plots of the relative height of the interior genu vs the height
of the caudate show a tight cluster of most unexposed individuals, within a much larger
scatter of exposed individuals (and a few unusual unexposed individuals). Relative eigen-
analysis of the corpus callosum semilandmarks revealed a similar pattern of excess vari-
ance that was not as narrowly circumscribed anatomically, but scatterplots of scores on
these eigenvectors again showed that many exposed individuals were outside the range of
variation of most unexposed individuals.

Although the results is somewhat disappointing with regards to using brain scans as
diagnostic tool for fetal alcohol exposure (the broad overlaps result in poor classification
efficiency), they are interesting for their biological significance. Based on the evidence of
elevated variation in the affected populations, the authors concluded that fetal alcohol
exposure caused disruptions in the developmental process in the maturing fetal brain.
This manifested as increased variation in structure, rather than specific defects or altera-
tions, as there was no change in the mean shapes of the examined structures. Thus these
data appear to be an example of disruption of a developmental process resulting in
increased variation, rather than a specific alteration in shape.

In a later discussion, Bookstein and Kowell (2010) explain how a likelihood ratio can be
constructed to express the strength of evidence that a given individual has FASD based on
geometric measurements of brain structure. In a likelihood ratio, one calculates the proba-
bility of the data X given two different hypotheses H1 and H2, such as the two claims
made by opposing sides in a courtroom (Lindley, 1977):

Likelihood5PðXjH1Þ=PðXjH2Þ (14.9)

The likelihood ratio approach to describing the strength of forensic evidence has seen a
rapid growth in other forensic settings as well (Lindley, 1977; Neumann et al., 2007; Su
and Srihari, 2009, 2010).

In the case of the brain scan data, X is the set of processed measurements as described
above, the classifying data. H1 is the hypothesis that the individual suffered some level of
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fetal alcohol exposure and H2 is the probability that the individual did not. In the case
report discussed by Bookstein and Kowell (2010), the transect vector across the isthmus
of the outline of the corpus callosum was used as a discriminating variable, based on a
comparison of the individual defendant to normal and exposed individuals in the studies
by Bookstein and collaborators (Bookstein et al., 2001, 2002a,b). The authors calculated a
likelihood ratio of 800 to 1 for this particular set of measurements in this individual. They
discuss how this type of evidence may then be combined with other evidence to diagnose
FASD, such as behavioral tests, which can likewise yield likelihood ratios.
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Glossary

Affine transformation (Also called “uniform”). Transformation (or mapping) that leaves parallel lines parallel.
The possible affine transformations include those that do not alter shape (scaling, translation, rotation) and those
that do (shear and contraction/dilation). See also Explicit uniform terms, Implicit uniform terms (Chapter 5).

Allometry Shape change correlated with size change, sometimes more narrowly defined as a change in the size of
a part according to the power law Y5 bXk, where Y is the size of the part, X is either the size of another part or
overall body size, and k and b are constants. There are three distinct types of allometry: (1) ontogenetic, an ontoge-
netic change in shape correlated with an ontogenetic increase in size; (2) static, variation in shape correlated with
variation size among individuals at a common developmental stage; and (3) evolutionary, an evolutionary change
in shape correlated with evolutionary changes in size (Chapters 9, 11).

Alpha (α) (1) The acceptable Type I error rate, typically 5%; (2) a factor multiplying partial warps before comput-
ing principal components of them; if α5 0, principal components of partial warps are conventional principal com-
ponents; when α 6¼0, the partial warps are differentially weighted. Either those with lower bending energy are
weighted more highly (α. 0) or those with greater bending energy are weighted more highly (α, 0). Typically,
values of 11 or 21 are used. See also Relative warps.

ANCOVA Analysis of covariance. A method for testing the hypothesis that samples do not differ in their means
when the effects of a covariate are taken into account. See also ANOVA, MANOVA and MANCOVA (Chapters
8, 9).

Anisotropic Not isotropic, having a preferred direction. In general, anisotropy is a measure of the degree to
which variation in some parameter is a function of its direction relative to some axis. In geometric morphometrics,
anisotropy usually refers to a measure of an affine transformation�either the ratio between principal strains, or a
ratio of variances along principal axes. See also Isotropic (Chapter 3).

ANOVA Analysis of variance. A method for testing the hypothesis that samples do not differ in their means.
ANOVA differs from MANOVA in that the means are unidimensional scalars. See also ANCOVA, MANOVA
and MANCOVA (Chapter 9).

Balanced Design An experimental design in which the sample size for each combination of factors is equal. This
makes it relatively straightforward to partition the variance (Chapter 9).

Baseline A line joining two landmarks, used in some superimposition methods to register shapes by assigning
fixed values to one or more coordinates of those landmarks. See also Baseline registration, Bookstein coordi-
nates, Sliding baseline registration (Chapters 3, 4).

Baseline registration A method of superimposing landmark configurations by assigning two landmarks fixed
values (the two landmarks are the endpoints of the baseline). The most common method of baseline registration
is the two-point registration developed by Bookstein, in which the ends of the baseline are fixed at (0, 0) and
(1, 0), yielding Bookstein coordinates. Other methods of baseline registration fix the endpoints at different values
(see Dryden and Mardia, 1998) or only fix one coordinate of each baseline point (see Sliding baseline registra-

tion) (Chapters 3, 4).

Basis A set of linearly independent vectors that span the entire vector space, also the smallest necessary set of
vectors that span the space. The basis can serve as a coordinate system for the space because every vector in that
space is a unique linear combination of the basis vectors. However, the basis itself is not unique; any vector space
has infinitely many bases that differ by a rotation. An orthonormal basis is a set of mutually orthogonal axes, all
of unit length. Partial warps and principal components are two common orthonormal bases used in shape analy-
sis. See also Eigenvectors (Chapters 5, 6).
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Bending energy (1) A measure of the amount of non-uniform shape difference based on the thin-plate spline met-
aphor. In this metaphor, bending energy is the amount of energy required to bend an ideal, infinite and infinitely
thin steel plate by a given amplitude between chosen points. Applying this concept to the deformation of a two-
dimensional configuration of landmarks involves modeling the displacements of landmarks in the X, Y plane as
if they were displacements above or below the plane (6Z). (2) Eigenvalues of the bending-energy matrix, repre-
senting the amount of bending energy per unit deformation along a single principal warp (eigenvector of the
bending-energy matrix). This concept of bending energy is useful because it provides a measure of spatial scale; it
takes more energy to bend the plate by a given amount between closely spaced landmarks than between more
distantly spaced landmarks. Thus, principal warps with large eigenvalues represent more localized components
of deformation than principal warps with smaller eigenvalues. The total bending energy (definition 1) of an
observed deformation is a sum of multiples of the eigenvalues, and accounts for the non-uniform deformation of
the reference shape into the target shape. See also Thin-plate spline, Principal warps, Partial warps (Chapter 5).

Bending-energy matrix The matrix used to compute principal warps and their bending energies (eigenvectors
and eigenvalues, respectively). This matrix is a function of the distances between landmarks in the reference
shape. See also Principal warps, Partial warps (Chapter 5).

Between Groups Principal Components Analysis A method for reducing the dimensionality of multivariate
data, performed by extracting the eigenvectors of the variance�covariance matrix of the group means. All indivi-
duals in the samples are then scored on these axes; as in ordinary PCA, the scores of individuals are calculated
by taking the dot product between that principal component and the data for that specimen (Chapter 6).

Biorthogonal directions Principal axes of a deformation; the term was used in Bookstein et al., 1985; more
recently, workers refer to principal axes (Chapter 3).

Black Book Marcus, L.F., Bello, E. and Garcia-Valdcasas, A. (eds) (1993). Contributions to Morphometrics. Madrid, Mono-
grafias del Museo Nacional de Ciencias Naturales 8. See also Blue Book,Orange Book, Red Book andWhite Book.

Blue Book Rohlf, F.J. and Bookstein, F.L. (eds) (1990). Proceedings of the Michigan Morphometrics Workshop.
University of Michigan Museum of Zoology, Special Publication No. 2. See also Black Book, Orange Book, Red
Book and White Book.

Bonferroni correction, Bonferroni adjustment An adjustment of the α-value to protect against inflating Type I
error rate when testing multiple a posteriori hypotheses. The adjustment is done by dividing the acceptable Type I
error rate (α) by the number of tests. That quotient is the adjusted α-value for each of the a posteriori hypotheses.
For example, if the desired Type I error rate is 5%, and there are 10 a posteriori hypotheses to test, 0.05/105 0.005
is the α-value for each of those 10 tests. A less conservative approach is a sequential Bonferroni adjustment in
which the desired α-value is divided by the number of remaining tests. Thus, the adjusted α for the first test
would be 0.05/10; for the second it would be 0.05/9; for the third it would be 0.05/8, etc. To apply this sequential
adjustment, hypotheses are ordered from lowest to highest p-value; the null hypothesis is rejected for each in
turn until reaching one that cannot be rejected (the analysis stops at that point).

Bookstein coordinates (BC) The shape variables produced by the two-point registration, in which the configura-
tion is translated to fix one end of the baseline at (0, 0), and then rescaled and rigidly rotated to fix the other end
of the baseline at (1, 0). See also Baseline registration (Chapter 3).

Bookstein two-point registration (BTR) See Two-point registration, Bookstein coordinates.

Bootstrap test A statistical test based on random resampling (with replacement) of the data. Usually, the method
is used to simulate the null model that one wishes to test. For example, if using a bootstrap test of the difference
between means, the null hypothesis of no difference is simulated. Bootstrap tests are used when the data are
expected to violate distributional assumptions of conventional analytic statistical tests. Rather than assuming that
the data meet the distributional assumptions, bootstrapping produces an empirical distribution that can be used
either for hypothesis testing or for generating confidence intervals. See also Jackknife test, Permutation test
(Chapters 8, 9).

Canonical variates analysis (CVA) A method for finding the axes along which groups are best discriminated.
These axes (canonical variates) maximize the between-group variance relative to the within-group variance.
Scores for individuals along these axes can be used to assign specimens (including unknowns) to the groups, and
can be plotted to depict the distribution of specimens along the axes. CVA is an ordination rather than statistical
method. See also Ordination methods, Principal components analysis (Chapter 6).
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Cartesian coordinates Coordinates that specify the location of a point as displacements along fixed, mutually per-
pendicular axes. The axes intersect at the origin, or zero point, of all axes. Two Cartesian coordinates are needed
to specify positions in a plane (flat surface); three are required to specify positions in a three-dimensional space.
These coordinates are called “Cartesian” after the philosopher Descartes, a pioneer in the field of analytic
geometry.

Centered A matrix is centered when its centroid is at the origin of a Cartesian coordinate system; i.e. at (0, 0) of a
two-dimensional system or at (0, 0, 0) of a three-dimensional system (Chapter 4).

Centroid See Centroid position.

Centroid position The position of the averaged coordinates of a configuration of landmarks. The centroid posi-
tion has the same number of coordinates as each of the landmarks. The X-component of the centroid position is
the average of the X-coordinates of all landmarks of an individual configuration. Similarly, the Y-component is
the average of the Y-coordinates of all landmarks of an individual configuration. It is common to place the cen-
troid position at (0, 0), because this often simplifies other computations (Chapter 4).

Centroid size (CS) A measure of geometric scale, calculated as the square root of the summed squared distances
of each landmark from the centroid of the landmark configuration. This is the size measure used in geometric
morphometrics. It is favored because centroid size is uncorrelated with shape in the absence of allometry, and
also because centroid size is used in the definition of the Procrustes distance (Chapter 4).

Coefficient A number multiplying a function. For example, in the equation Y5mX, m is the coefficient for the
slope, which is the function that relates X and Y (Chapters 8, 9).

Column vector A vector whose entries are arranged in a column. Contrast to a Row vector.

Complex numbers A number consisting of both a real and an imaginary part. An imaginary number is a real
number multiplied by i, where i is

ffiffiffiffiffiffiffiffi
2 1

p
. A complex number is written as Z5X1 iY, where X and Y are real

numbers. In that notation, X is said to be the real part of Z and Y is the imaginary part. A complex number is
often used to represent a vector in two dimensions. The mathematics of two-dimensional vectors and complex
numbers are similar, so it is sometimes useful to perform calculations or derivations in complex number form.

Configuration see Landmark configuration.

Configuration matrix A matrix representing the configuration of K landmarks, each of which has M dimensions.
A configuration matrix is a K3M matrix in which each row represents a landmark and each column represents
one Cartesian coordinate of that landmark; M5 2 for landmarks of two-dimensional configurations (planar
shapes), and M5 3 for landmarks of three-dimensional configurations. Two configuration matrices can differ in
location, size and orientation, as well as shape (Chapter 4).

Configuration space The set of all possible configuration matrices describing all possible configurations of K
landmarks with M coordinates (all with the same values of K and M). Because there are K3M elements in the
configuration matrices, there are K3M dimensions in the configuration space. In statistical analyses, the configu-
ration space accounts for K3M degrees of freedom because that is the number of independent pieces of informa-
tion (e.g. landmark coordinates) needed to specify a particular configuration (Chapter 4).

Consensus configuration The mean (average) configuration of landmarks in a sample of configurations. Usually,
this is calculated after superimposing coordinates. See also Generalized Procrustes superimposition, Reference
form (Chapter 4).

Contraction A mathematical mapping that “shrinks” a configuration along one axis. A contraction along the
X-axis would map the point (X, Y) to the point (AX, Y), where A is less than one. A contraction along the Y-axis
would map (X, Y) to (X, AY). Expansion or dilation is the opposite of contraction (A. 1).

Coordinates The set of values that specify the location of a point along a set of axes (see Cartesian coordinates).

Correlation A measure of the association between two or more variables. In morphometrics, correlation is most
often measured using Pearson’s product-moment correlation, which is the covariance divided by the product of
the variances:

RXY 5

PðX2XmeanÞðY2YmeanÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðX2XmeanÞ2
P ðY2YmeanÞ2

q
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where the sums are taken over all specimens. When variables are highly correlated we can predict one from the
other (e.g. Y from X), and the more highly correlated they are, the better our predictions will be. Uncorrelated
variables are considered independent. See also Covariance.

Covariance Like correlation, a measure of the association between variables. The sample estimate of the covari-
ance between X and Y is:

SXY 5
1

N2 1

� � X
ðX2XmeanÞðY2YmeanÞ

where the summation is over all N specimens.

Curved space A metric space in which the distance measure is not linear. The ordinary rules of Euclidean geome-
try do not apply in such spaces. The consequences of the curvature depend upon the distance between points; we
can treat the surface of the earth as flat as long as the maps cover only small areas, but in long-distance naviga-
tion, the curvature must be taken into account. Shape space is curved, so the rules of Euclidean geometry do not
apply, which is why shapes are mapped onto a Euclidean space tangent to shape space. The reference form is the
point of tangency of the linear tangent space to the underlying curved space, so using the mean of all specimens
as the reference forms acts to minimize the differences between the two spaces.

D A generalized statistical distance between means of two groups (X1 and X2) relative to the variance within the
groups:

D5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX12X2ÞTS21

p ðX12X2Þ
q

where ( )T refers to the transpose of the enclosed matrix, and S21
p is the inverse of the pooled variance�covariance

matrix. This distance takes into account the correlations among variables when computing the distance between
means. The generalized distance is used in Hotelling’s T2-test. Also known as the Mahalanobis’ distance.

D2 The squared generalized distance, D. See D.

Deformation A smooth, continuous mapping or transformation; in morphometrics, it is usually the transforma-
tion of one shape into another. The deformation refers not only to the change in positions of landmarks, but also
to the interpolated changes in locations of unanalyzed points between landmarks (Chapter 5).

Degrees of freedom In general, the number of independent pieces of information. In statistical analyses, the total
degrees of freedom are approximately the product of the number of variables and the number of individuals (the
total may be partitioned into separate components for some tests). If every measurement on every individual
were completely independent, the degrees of freedom would be the product of the number of variables and the
number of individuals, but if one statistic is known (or estimated), the number of degrees of freedom that remain
to estimate a second statistic will be reduced. For example, the estimate of the mean height of N individuals in a
sample will have N3 15N degrees of freedom, because all N measurements are needed and there is only one
measured variable. In contrast, the estimate of the variance in height will have N2 1 degrees of freedom because
only N2 1 deviations from mean height are independent (the deviation of the Nth individual can be calculated
from the mean and the other N2 1 observed heights). In geometric morphometrics, when configurations of land-
marks are superimposed, degrees of freedom are lost for a different reason; namely, information that is not rele-
vant to comparison of shapes (location, scale and rotation) is removed from the coordinates.

Dilation Opposite of Contraction.

Dimensionality reduction There is a common need to reduce the dimensionality of a data set, both for display
and to reduce the number of variables used to less than the degrees of freedom in the data, thus allowing inver-
sion of a variance�covariance matrix. If a PCA is performed on the data, and the scores corresponding to all PCs
with non-zero eigenvalues are retained, and the rest discarded, the degrees of freedom in the remaining scores
will equal the degrees of freedom in the data.

Discriminant function The linear combination of variables optimally discriminating between two groups. It is
produced by discriminant function analysis. Scores on the discriminant function can be used to identify members
of the groups (Chapter 14).

Discriminant function analysis A two-group canonical variates analysis. See Canonical variates analysis

(Chapter 14).
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Disparity, morphological disparity (MD) Phenotypic variety, usually morphological. Several metrics can be used
to measure disparity, but the one most commonly used in studies of continuous variables is:

MD5

PN
j51 D

2
j

ðN2 1Þ
where Dj is the distance of species j from the overall centroid (i.e. the grand mean calculated over N groups, e.g.
species) (Chapters 10, 11).

Distance A function measuring the separation between points. Within any space there are multiple possible dis-
tances. For this reason, it is necessary to specify the type of distance used. See also D, D2, Euclidean distance,
Generalized distance, Geodesic distance, Great circle distance, Partial Procrustes distance, Full Procrustes dis-

tance, Mahalanobis’ distance (Chapter 4).

Dot product (Also called inner product.) Given two vectors A5 {A1, A2, A3. . .AN}, B5 {B1, B2, B3. . .BN}, the dot
product of A and B is:

A �B5A1B1 1A2B2 1A3B3 1 . . .:1ANBN

and

A �B5 jAjjBj cos ðθÞ
where jAj is the magnitude of A, jBj is the magnitude of B, and θ is the angle between A and B. If the magnitude
of A is 1, then A � B5 jBj cos(θ), which is the component of B along the direction specified by A. The dot prod-
uct is used to calculate scores on coordinate axes, by projecting the data onto those axes (this is how partial warp
scores and scores on principal components are calculated). It is also used to find the vector correlation, RV,
between two vectors (that correlation is the cosine of the angle between vectors).

Edge registration See Baseline registration.

Eigenvalues See Eigenvectors.

Eigenvectors Eigenvectors are the non-zero vectors, A, satisfying the eigenvector equation:

ðX2λIÞA5 0

The values of λ that satisfy this equation are eigenvalues of X. Eigenvectors are orthogonal to one another,
and provide the smallest necessary set of axes for a vector space (i.e. they provide a basis for that space). The
eigenvectors of a variance�covariance matrix are called principal components; the eigenvalue corresponding to
each axis gives the variance associated with it. The eigenvectors of the bending-energy matrix are the principal
warps; the eigenvalue corresponding to each axis gives the bending energy associated with it. See also Basis

(Chapters 5, 6).

Element of a matrix A number in a matrix, typically referenced by the symbol designating the matrix with sub-
scripts indicating its row and column; for example, X4,5 refers to the element on the fourth row and fifth column
of the matrix X.

Euclidean distance The square root of the summed squared distances along all orthogonal axes. A Euclidean dis-
tance does not change when the axes of the space are rotated (in contrast to a Manhattan distance, which is sim-
ply the sum of the distances). See also D, D2, Distance, Generalized distance, Geodesic distance, Great circle

distance, Procrustes distance, Full Procrustes distance, Partial Procrustes distance (Chapter 4).

Euclidean space A coordinate space in which the metric is a Euclidean distance.

Exchangeable A concept used in designing permutation tests. If the null hypothesis used in the test states that a
property, such as group membership or size, is not a statistically significant factor, then that property is said to be
exchangeable under that hypothesis. If age is exchangeable in a given test, then the age of the specimens would
be permuted as part of the test. If age is significant, then this would be evident from the permutation test, as the
observed statistic would be unlikely (i.e. have a low probability, p) based on the distribution of the statistic over
the permuted data, and we would reject the null hypothesis as having a low probability of being true.

Explicit uniform term, explicit uniform component A uniform component describes affine or uniform deforma-
tions. Some of these do not alter shape (i.e. rotation, translation and rescaling) whereas others do (i.e. shear and
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dilation). Accordingly, we divide affine deformations into two sets: (1) implicit uniform terms, which do not alter
shape and are used in superimposing forms but are not explicitly recorded; and (2) explicit uniform terms, which
do alter shape and therefore are typically reported as components of the deformation. All uniform terms must be
known to model a deformation correctly (Chapter 5).

Fiber In geometric morphometrics, the set of all points in pre-shape space representing all possible rigid rotations
of a landmark configuration that has been centered and scaled to unit centroid size; in other words, the set of
pre-shapes that have the same shape. Fibers are collapsed to a point in shape space (Chapter 4).

Form Size-plus-shape of an object; form includes all the geometric information not removed by rotation and trans-
lation. Form is also called Size-and-shape.

Full Procrustes distance (DF) The distance between two landmark configurations when, after partial Procrustes
superimposition, the shape superimposed on the reference is rescaled to cs5 cos(ρ) further to minimize the sum
of squared distances between their corresponding landmarks. See also Partial Procrustes distance, Procrustes dis-
tance (Chapter 4).

Full Procrustes superimposition The superimposition that yields the Full Procrustes distance of a shape from the
reference, achieved by reducing centroid size to cos(ρ). See also Full Procrustes distance (Chapter 4).

F-test One of a variety of test statistics, formed as a ratio of the variance explained by a model or a factor to the
unexplained or error variance estimate. In some cases, the observed F-value is compared to an applicable analytic
model, otherwise permutation tests are commonly used to determine the associated p-value.

Generalized distance See D.

Generalized least squares superimposition A generalized superimposition method that uses a least squares fitting
criterion, meaning that the parameters are estimated to minimize the sum of squared distances over all landmarks
over all specimens. Usually, in geometric morphometrics, GLS refers specifically to a generalized least squares
Procrustes superimposition � a different approach is used in generalized resistant-fit methods (Chapter 4).

Generalized least squares Procrustes superimposition (GLS) A generalized superimposition minimizing the par-
tial Procrustes distance over all shapes in the sample, using a least squares fitting function. This is the method
usually used in geometric morphometrics; it is now usually termed Generalized Procrustes Analysis (Chapter 4).

General Linear Models (GLM) A generalization of the ideas behind MANOVA, MANCOVA and regression
models, to encompass any model that is linear in its fitted parameters. The statistical significance of the covariates
and factors in the model are typically assessed using F-tests (Chapter 9).

Generalized Procrustes Analysis (GPA) A Procrustes-based analysis using generalized superimposition to esti-
mate iteratively the mean and then superimpose all specimens on it. This is now the standard term for a
Generalized least squares Procrustes superimposition. See Generalized superimposition.

Generalized superimposition The superimposition of a set of specimens onto their mean. This involves an itera-
tive approach because the mean cannot be calculated without superimposing specimens, which cannot be super-
imposed on the mean before the mean is calculated (an alternative approach is used in ordinary Procrustes
analysis). See also Consensus configuration (Chapter 4).

Geodesic distance The shortest distance between points in a space. On a flat planar surface, this is the length of
the straight line joining the points � i.e. the Euclidean distance. On curved surfaces, this distance is the length of
an arc.

Great circle The intersection of the surface of a sphere and a plane passing through its center. A great circle
divides the surface of the sphere in half. On the surface of the sphere, the shortest distance between two points
lies along the great circle that passes through those points. If the Earth were perfectly spherical, the equator and
all lines of latitude would be great circles.

Great circle distance The arc length of the segment of the great circle connecting two points on the surface of a
sphere; this is the geodesic distance between those points, the shortest distance between the points in the space of
the surface of the sphere.

Homology (1) In biology, similarity due to common evolutionary origin. (2) In morphometrics, the correspon-
dences between landmarks, sometimes imputed by a mathematical function, called a “homology function” (e.g.
see Bookstein et al., 1985). Homology is the primary criterion for selecting landmarks (Chapter 2).
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Hypersphere The generalization of a three-dimensional sphere to more than three dimensions. In three dimen-
sions, points on the surface of a sphere of radius R that is centered at the origin satisfy the equation
X21Y21Z25R2.

Implicit uniform terms See Explicit uniform terms.

Induced correlation A correlation induced by dividing two values by a third which is common to both. The
induced correlation between the (rescaled) variables is not present in the original variables.

Inner product See Dot product.

Invariant A quantity is invariant under a mathematical operation or transformation when it is not changed by
that operation. For example, centroid size is invariant under translation, centroid position is not.

Isometric In general, a transformation that leaves distances between points unaltered. In morphometrics, isometry
usually means that shape is uncorrelated with size. In statistical tests of allometry, isometry is the null hypothesis
(Chapters 8, 11).

Isotropic A property is said to be isotropic if it is uniform in all directions, i.e. if it does not differ as a function of
direction. When an error is isotropic, it is equal in all directions, and there is no correlation among errors.
Isotropic is the opposite of anisotropic.

Jackknife test An approach to statistical testing that involves resampling the original observations to generate an
empirical distribution. Jackknifing is carried out by omitting one specimen at a time. See also Bootstrap test,
Permutation test (Chapter 8).

Kendall’s shape space The space in which the distance between landmark configurations is the Procrustes dis-
tance. This space is constructed by using operations that do not alter shape to minimize differences between all
configurations of landmarks that have the same values of K (number of landmarks) and M (number of coordi-
nates of a landmark). Kendall’s shape space is the curved surface of a hypersphere, so conventional statistical
analyses are conducted in a Euclidean tangent space (Chapter 4).

Landmark Biologically, landmarks are discrete, homologous anatomical loci; mathematically, landmarks are
points of correspondence, matching within and between populations (Chapter 2).

Landmark configuration The positions (coordinates) of a set of landmarks representing a single object, containing
information about size, shape, location and orientation. The number of landmarks is typically represented by K,
and the dimensionality of the landmarks (number of coordinates) is typically represented by M. Therefore, if
there are 16 landmarks, each with an X- and Y-coordinate, then K5 16 and M5 2 (Chapter 4).

Least squares A method of choosing parameters that minimizes the summed square differences over all indivi-
duals (and variables) (Chapters 4, 7, 8).

Linear A function f(X) is linear if it depends only on the first power of X; e.g. f(X)5 2(X) is linear, but f(X)5 (X)2

is not.

Linear combination A vector produced by multiplying and summing coefficients of one or more vectors. For
example, given the vector XT5 {X1, X2. . .XN} and AT5 {A1, A2 . . . AN}, then Y5A1X11A2X21 . . . ANXN is a
linear combination of the vectors. We can write this as Y5ATX.

Linear transformation A transformation producing a set of new vectors that are linear combinations of the origi-
nal variables. See Linear combination.

Linear vector space The set of all linear combinations of a set of vectors. The space spans all possible linear com-
binations of the basis vectors, as well as all sums or differences of any linear combination of those basis vectors.
The two-dimensional Cartesian plane is the linear vector space formed by the linear combinations of two vectors
of unit length, one along the X-axis, the other along the Y-axis.

Mahalanobis’ distance (D2) The squared distance between two means divided by the pooled sample variance�
covariance matrices. This is a generalized statistical distance, adjusting for correlations among variables. See also
D, Generalized distance.

MANCOVA Multivariate analysis of covariance. A method for testing the hypothesis that samples do not differ
in their means when the effects of a covariate are taken into account. See also General Linear Models (GLM),
ANOVA, ANCOVA and MANOVA (Chapters 8, 9).
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MANOVA Multivariate analysis of variance. A method for testing the hypothesis that samples do not differ in
their means; MANOVA differs from ANOVA in that the means are multidimensional vectors. See also General

Linear Models (GLM), ANOVA, ANCOVA and MANCOVA (Chapters 8, 9).

Map A mathematical function relating X to Y by stating the correspondence between elements in X and Y. Each
element in X is placed in correspondence with one element in Y. Multiple elements in X may map to the same ele-
ment in Y (landmark configurations differing only in rotation for example would all map to the same shape). A
map is written as: f : X-Y where f is the map from the set X to the set Y.

Matrix A rectangular array of numbers (real or complex). The numbers in a matrix are referred to as elements of
the matrix. The size of a matrix is always given as the number of rows followed by the number of columns; e.g. a
43 2 matrix has four rows and two columns.

Mean Also known as the average; an estimate of the center of the distribution calculated by summing all observa-
tions and dividing by the sample size.

Median An estimate of the center of a distribution calculated such that half the observed values are above and
the other half are below.

Metric A non-negative real-valued function, D(X, Y), of the points X and Y in a space such that:

1. The only time that the function is zero is when X and Y are the same point, i.e. D(X, Y)5 0, if and only if X5Y

2. If we measure from X to Y, we get the same distance as when we measure from Y to X, so D(X, Y) 5 D(Y, X)
for all X and Y

3. The triangle inequality holds true. The triangle inequality states the distance between any two points, X and Y,
is less than or equal to the sum of distances from each to a third point, Z, so D(X, Y) # D(X, Z)1 D(Y, Z), for
all X, Y and Z.

Multiple regression Regression of a single (univariate) dependent variable on more than one independent vari-
able. See also Multivariate regression, Multivariate multiple regression, Regression.

Multivariate analysis of variance See MANOVA.

Multivariate multiple regression Regression of several dependent variables on more than one independent vari-
able. In morphometrics, this method is used to regress shape (the dependent variables) onto multiple independent
variables. See also General Linear Models, Multiple regression, Multivariate regression, Regression.

Multivariate regression Regression of several dependent variables onto one independent variable. In morpho-
metrics, this method is used to regress shape onto a single independent variable, such as size. The coefficients
obtained by multivariate regression are the same as those estimated by simple bivariate regression of each depen-
dent variable on the independent variable. However, the statistical test of the null hypothesis differs. See also
General Linear Models, Multiple regression, Multivariate multiple regression, Regression (Chapters 8, 9).

Non-uniform Non-isotropic, or localized, not Uniform; Non-affine. See Non-uniform deformation.

Non-uniform deformation The component of a deformation that is not uniform. In contrast to a uniform defor-
mation, which leaves parallel lines parallel and has the same effect everywhere across a form, a non-uniform
deformation turns squares into trapezoids or diamonds (shapes that do not have parallel sides) and has different
effects over different regions of the form. Most deformations comprise both uniform and non-uniform parts. The
non-uniform component can be further subdivided, see Partial warps (Chapter 5).

Normalize To set the magnitude to one. Normalizing a vector sets the length of the vector to one; this is done by
dividing each component of the vector by the length of the vector, calculated by taking the square root of the
summed squared coefficients.

Null hypothesis, or null model Usually, the hypothesis that the factor of interest has no effect beyond that
expected by chance. For example, in an analysis of allometry, the null hypothesis being tested by regression of
shape on size is that shape does not depend on size (i.e. isometry). Similarly, in a comparison of two means using
Hotelling’s T2-test, the null hypothesis is that the two groups do not differ beyond what is expected by chance.

Orange Book Bookstein, F.L. (1991). Morphometric Tools for Landmark Data. Geometry and Biology. Cambridge
University Press. See also Black Book, Blue Book, Red Book and White Book.
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Ordinary Procrustes analysis (OPA) An approach to superimposition in which one landmark configuration is fit-
ted to another, which differs from a Generalized superimposition in that it involves only two forms. This
approach has rarely been used once iterative methods became available for generalized superimpositions. See
also Generalized Procrustes Analysis (GPA), Generalized superimposition, Consensus form (Chapter 4).

Ordination Ordering specimens along one or more axes based on some criterion (e.g. from youngest to oldest, or
shortest to tallest). Ordination methods include principal components analysis and canonical variates analysis; the
scores on the axes provide a basis for ordering specimens (Chapter 6).

Orthogonal Perpendicular (at right angles to each other). Two vectors are orthogonal if the angle between them is
90�; when they are, their dot product is zero.

Orthonormal Perpendicular and of unit length; vectors are orthonormal if they are mutually orthogonal and of
unit length.

Orthonormal basis See Basis. An orthonormal basis is comprised of a set of mutually perpendicular basis vectors
normalized so that their magnitudes are all set to one.

Outline A curve around the perimeter of an object (or around a distinct part of it).

Partial least squares analysis A method of exploring patterns of covariance or correlation between two blocks of
variables measured on the same set of specimens. A singular value decomposition is used to determine the pair
of vectors (each a linear combination of variables within one of the blocks) that expresses the greatest proportion
of the covariance between blocks. See also Singular value decomposition, Singular warps (Chapter 7).

Partial Procrustes distance (Dp) The distance between two landmark configurations when both shapes are cen-
tered, fixed to unit centroid size, and rotated to minimize the sum of squared distances between their correspond-
ing landmarks. See also Full Procrustes distance, Procrustes distance (Chapter 4).

Partial Procrustes superimposition The superimposition that yields the Partial Procrustes distance of a shape
from the reference, achieved by fixing centroid size at 1. See also Partial Procrustes distance (Chapter 4).

Partial warps The term partial warps sometimes refers solely to the components of the non-uniform deformation,
which are computed as eigenvectors of the bending-energy matrix projected onto the X, Y-plane of the data (they
are projections of principal warps), ordered from least to most bending energy. These eigenvectors provide an
orthonormal basis for the non-uniform part of a deformation. Sometimes “partial warps” also includes the com-
ponents of the uniform deformation, as the zeroth partial warp � in which case the scores on this component are
included among the partial warp scores (Chapter 5).

Partial warp scores Coefficients indicating the position of an individual, relative to the reference, along partial
warps. They are calculated by taking the dot product between the partial warps and the data for a specimen.
When appropriate scores on the uniform component are also included among the partial warps scores, the sum
of the squared scores equals the squared partial Procrustes distance of that specimen from the reference. This full
set of scores can be used as shape variables in any conventional statistical analysis because they are based on the
appropriate distance measure and have the same number of coordinates as degrees of freedom. See also Non-uni-

form deformation, Partial warps, Principal warps, Uniform deformation (Chapter 5).

Permutation test An approach to statistical testing that involves permuting (rather than randomly sampling)
observed values. Unlike many bootstrapping methods, the resampling done is without replacement, each speci-
men appears only once in the permutation set. See also Bootstrap test, Jackknife test, Monte Carlo simulations
(Chapters 8, 9).

Phylogenetic generalized least squares A method of accounting for the expected non-independence of observa-
tions on taxa by incorporating the phylogenetic variance�covariance matrix (a function of branch lengths between
taxa) in statistical analyses (Chapter 10).

Phylogenetic independent contrasts A method of computing independent evolutionary changes from observa-
tions of taxa that are related by varying degrees of common ancestry. Sometimes called simply independent con-
trasts, these are net differences between daughter nodes (including tips) of the phylogenetic tree, weighted by
branch lengths between the nodes (Chapter 10).

Pinocchio effect A large change concentrated at one landmark, with little or none at others; a highly localized
change. In the presence of the Pinocchio effect, Procrustes superimpositions imply that the shape difference is
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distributed over all landmarks. Resistant-fit methods, such as RFTRA, were devised to avoid that implication
(Chapter 4).

Population The set of all possible individuals of a specific type, such as all members of a species, or all leaves on
a particular kind of tree. See also Sample (Chapter 8).

Position See Centroid position.

Pre-shape A centered landmark configuration, scaled to unit centroid size (Chapter 4).

Pre-shape space The set of all possible pre-shapes for a given number of landmarks with a given number of
dimensions. This is the surface of a sphere of KM2M2 1 dimensions, where K is the number of landmarks and
M is the number of dimensions of each landmark (Chapter 4).

Principal axes The set of orthogonal axes used in modeling the change of one shape into another as an affine
transformation. This transformation can be parameterized by its effect on a circle or sphere (for two or three
dimensional shapes, respectively). In two dimensions, an affine transformation takes a circle into an ellipse and
the principal axes are the directions of the circle that undergo the greatest relative elongation or shortening
mapped onto the major and minor axes of the ellipse. The ratio of the lengths of these axes is the anisotropy, a
measure of the amount of affine shape change. Principal axes are invariant under a change in the coordinate sys-
tem. See also Principal strains (Chapters 3, 4).

Principal components analysis (PCA) A method for reducing the dimensionality of multivariate data, performed
by extracting the eigenvectors of the variance�covariance matrix. These eigenvectors are called principal compo-
nents. Their associated eigenvalues are the variance explained by each axis. Principal components provide an
orthonormal basis. The position of a specimen along a principal component is represented as its principal compo-
nent score, calculated by taking the dot product between that principal component and the data for that specimen
(Chapter 6).

Principal strain In an affine deformation, the ratio of the length of a principal axis in the ellipse to the original
diameter of the circle. See also Principal axes (Chapter 3).

Principal warp An eigenvector of the bending-energy matrix interpreted as a warped surface over the surface of
the X, Y-plane of the landmark coordinates. Principal warps are ordered from least to most bending energy (smal-
lest to largest eigenvalue), which corresponds to the least to most spatially localized deformation. Principal warps
differ from partial warps in that partial warps are projections of principal warps onto the X, Y-plane of the data.
See also Bending energy, Bending-energy matrix, Orthonormal basis, Partial warp, Thin-plate spline

(Chapter 5).

Probability distribution A mathematical function that describes the probability of a measurement taking on
either a particular value or a range of values, depending on whether the variable is discrete or continuous, respec-
tively (Chapter 8).

Procrustes distance This term has been used to refer to the sum of squared distances between corresponding
points of two superimposed shapes after one shape has been centered on the other and rotated to minimize that
sum of squares. When the shape being superimposed is reduced in centroid size to minimize further the differ-
ence between it and the target, the distance may be called a Full Procrustes distance (DF). When both sizes are
held at centroid size5 1, the distance may be called a Partial Procrustes distance (Dp). Both DF and Dp are related
to the arc distance (ρ) between configurations in the space of aligned preshapes with centroid sizes fixed at 1.
This arc length has also been called a Procrustes distance, with the others called full (or partial) Procrustes chord
distances to distinguish them from the arc length. See also Full Procrustes distance, Partial Procrustes distance

(Chapter 4).

Procrustes Form Space An approach to analyzing both size and shape. In this method, a data matrix is formed of
the coordinates in Procrustes superimposition and a column of the log centroid size values is added. This data
matrix is then analyzed using a PCA or in hypothesis testing procedures (Chapter 14).

Procrustes methods A general term referring to the superimposition of matrices based on a least squares crite-
rion. The term comes from the Greek mythological figure, Procrustes, who fitted visitors to a bed by stretching
them or amputating overhanging parts (Chapter 4). See Full Procrustes, Partial Procrustes.

Procrustes residuals Coordinates of a landmark configuration obtained by a Procrustes superimposition. They
are residuals in the sense that they indicate the deviation of each specimen from the mean (i.e. the consensus
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configuration) or other reference. See also Consensus configuration, Procrustes superimposition, Reference

(Chapter 5).

Procrustes Size Preserving or Procrustes SP, is a Procrustes superimposition variant in which the superimposi-
tion is done using only translations and rotation, not scaling. Dryden and Mardia (1998) refer to this as the “size
and shape” of a configuration. It is possible to define a Procrustes SP distance as well. See also Procrustes Form
Space (Chapter 14).

Procrustes superimposition A superimposition of shapes that minimizes the Procrustes distances over the sam-
ple. The term is used whether the distance being minimized is the full or the partial Procrustes distance
(Chapter 4).

Red Book Bookstein, F.L., Chernoff, B., Elder, R.L. et al. (eds) (1985). Morphometrics in Evolutionary Biology: The
Geometry of Size and Shape Change, with Examples from Fishes. Academy of Natural Sciences of Philadelphia, Special
Publication No. 15. See also Black Book, Blue Book, Orange Book and White Book)

Reference, Reference form The shape to which all others are compared. It is the point of tangency between
Kendall’s shape space and the tangent space. Because the linear approximation to Kendall’s shape space may be
inaccurate when the point of tangency is far from the center of the distribution of specimens, the reference is usu-
ally chosen to minimize the distances between it and the other specimens�i.e. it is chosen to be the consensus
shape (Chapter 4).

Regression An analytic procedure for fitting a predictive model to data and assessing the validity of that model.
One variable is expressed as a function of the other, e.g. Y5mX1 b expresses Y as a linear function of X. The pre-
dictor variable(s) are the independent variable(s), and those variables predicted by the model are the dependent
variable(s). In the linear model above, X is the independent variable that predicts the dependent variable, Y. The
term “regression” comes from Francis Galton (1889), who concluded that offspring tend towards (regress
towards) the mean of the population. As stated by Galton in his law of universal regression, “each peculiarity in
a man is shared by his kinsman, but on the average, in a less degree”. Thus, the offspring of unusually tall fathers
regress towards the mean height of the population (Chapters 8, 9).

Relative warps Principal components of partial warp scores, sometimes weighted to emphasize components of
low or high bending energy (that weighting is done by setting the parameter α to a value other than 0).
Originally, the term referred to an eigenanalysis of the variance�covariance matrix relative to the bending-energy
matrix, hence a new term was coined for these components (Bookstein, 1991). Currently, the term usually refers
to a conventional principal components analysis of partial warp scores. See also Alpha (α), Bending energy,
Partial warp scores, Principal components analysis (Chapter 5).

Repeated measurement error The level of variation that appears when a single specimen is repeatedly measured,
this quantity indicates the achievable level of precision in a particular approach to measurement. In landmark-
based methods, it is measured as the summed squared Procrustes distances of repeated measurements of a single
specimen about the mean of those measurements, or as the square root of this value, the RMS scatter.

Repeated median The median of medians, used in estimating the scaling factor and rotation angle by resistant-fit
superimposition methods such as RFTRA. The repeated median is more robust to large deviations than the
median or a least squares estimator. See also Resistant-fit superimposition, RFTRA (Chapter 4).

Resampling A method whereby a new data set is constructed by randomly selecting from the original data
(either values recorded on specimens or residuals from a model). Construction of a large series of resampled data
sets can be used to simulate either the distribution of measured values or the distribution of a test statistic under
the null model. Under some conditions, resampling can also be used to produce confidence intervals around the
statistic. This approach permits hypothesis tests when the data are expected to deviate from the distributional
assumptions of conventional analytic tests. Resampling may be done with replacement, meaning that each obser-
vation can appear more than once in a resampled data set; resampling without replacement means each observa-
tion appears only once in a set. See also Bootstrap test, Jackknife test, Permutation test (Chapters 8, 9).

Rescale Multiply or divide by a scalar value; used in geometric morphometrics to change the centroid size of a
configuration (Chapters 3, 4).

Residual Deviation of an observation from the expected value under a model. For example, a residual from a
regression is the deviation between the observed and expected values of the dependent variable at a given value
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of the independent variable. The term is also used for the coordinates obtained by a Procrustes superimposition,
the Procrustes residuals, which are deviations between individual specimens and the reference.

Resistant-fit superimposition A superimposition method that uses medians or repeated medians (rather than a
least squares error criterion) to superimpose forms. The method is intended to be resistant to large localized
shape differences, such as those produced by the Pinocchio effect. RFTRA is an example of this type of method.
See also Repeated medians, RFTRA (Chapter 4).

RFTRA (Resistant-fit theta-rho analysis) A resistant-fit superimposition method using the method of repeated
medians to determine the scaling factor and rotational angle. See also Resistant fit and Repeated median
(Chapter 4).

Rigid rotation A rotation of an entire vector or matrix by a single angle. Rigid rotations do not alter the size,
shape or location of the object. Rotations are often represented by square matrices. The rotation matrix:

R5
cos θ 2sin θ
sin θ cos θ

� �

rotates a 23N matrix through an angle θ. When different vectors are multiplied by different angles, the rotation
is oblique, not rigid.

RMS scatter The square root of the mean of the summed squared distances of specimens about their mean (root
mean square, RMS). It is thus the square root of the variance as measured using Procrustes distances, and a linear
measure of the variability of a group (Chapter 14).

Row vector A vector with coefficients in a row. Contrast to a Column vector.

Sample The collection of observed individuals representing members of a population. An individual observation
is the smallest sampling unit in the study, which might be an individual organism or one of its parts, or a collec-
tion of organisms such as a species or a bacterial colony (Chapter 8).

Scalar A real or complex number.

Scale (1) Noun � size of an object (given some definition of size); (2) verb � to change the size of an object (equiva-
lent to rescale).

Scaling factor A constant which is used to change the scale or size of a matrix or vector. This is done by multiply-
ing or dividing the matrix or vector by the constant.

Score In morphometrics, a coefficient locating a specimen along a vector, calculated by projecting the specimen
onto an axis. Usually, scores locate the position of a specimen relative to the axes of a coordinate system. They
are calculated by taking the dot product between an axis of the coordinate system and the data of a specimen.
The scores are linear combinations of the original variables. Partial warp scores locate the position of an individ-
ual specimen relative to the coordinate system provided by the partial warps. Similarly, principal component
scores locate the position of an individual specimen relative to the coordinate system provided by the principal
components. Scores can be calculated relative to any basis of a vector space because each basis provides a coordi-
nate system for that space. See Dot product.

Semilandmark A point on a geometric feature (curve, edge or surface) defined in terms of its position on that fea-
ture (e.g. at 10% of the length of the curve from one end). Semilandmarks are used to incorporate information
about curvature in a geometric shape analysis. Because semilandmarks are defined in terms of other features,
they contain less information (fewer degrees of freedom) than landmarks (Chapter 2).

Shape In geometric morphometrics, following Kendall, shape is all the geometric information remaining
in an landmark configuration after differences in location, scale and rotational effects are removed (Chapters 1,
2, 3).

Shape coordinates Within geometric morphometrics, coordinates of landmarks after superimposition (Chapters
3, 4)

Shape space Within geometric morphometrics, Kendall’s shape space. The term is more general, however, as
it can apply to any space defined by a particular mathematical definition of shape. There are shape spaces for
outline measurements, for example. There are also shape spaces based on different definitions of size. The charac-
teristics of these various shape spaces are not necessarily the same as those of Kendall’s (Chapter 4).
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Shape variable A general term for any variable expressing the shape of an object, including ratios, angles, shape
coordinates obtained by a superimposition method, or vectors of coefficients obtained from partial warp analysis,
principal components analysis, regression, etc. Shape variables are invariant under translation, scaling and
rotation.

Shear An affine (or uniform) deformation that leaves the Y-coordinate fixed while the X-coordinate is displaced
along the X-axis by a multiple of Y. Under a shear, the point (X, Y) maps to (X1AY, Y), where A is the magni-
tude of the shear. Visually, this looks like altering a square by sliding the top side to the left or right, without
altering its height or the lengths of the top and bottom (Chapter 5).

Singular axes Orthonormal vectors produced by singular value decomposition. See Singular value decomposi-

tion (Chapter 7).

Singular value In a singular value decomposition, a quantity expressing a relationship between two singular
axes; an element λi of the diagonal matrix S. In partial least squares analysis, each singular value represents the
covariance explained by the corresponding pair of singular axes. See Singular value decomposition (Chapter 7).

Singular value decomposition (SVD) A mathematical technique for taking an M3N matrix A (where N is
greater than or equal to M) and decomposing it into three matrices:

A5USVT

where U is an M3N matrix whose columns are orthonormal vectors, S is an N3N diagonal matrix with on-diag-
onal elements λi, and V is an N3N matrix whose columns are orthonormal vectors. The values λi are called the
singular values of the decomposition, and the columns of U and V are called the singular vectors or singular axes
corresponding to a given singular value. In partial least squares analysis, A is the matrix of covariances between
the two blocks, the columns of U are linear combinations of the variables in one of the two data sets, the columns
of V are linear combinations of the variables in the other data set, and each λi is the portion of the total covariance
explained by the corresponding pair of singular axes (Chapter 7).

Singular warps Sometimes used in geometric morphometrics for singular axes computed from shape data (partial
warp scores or residuals of a Procrustes superimposition), so that the singular axes describe patterns of differ-
ences in shape. See Singular value decomposition (Chapter 7).

Size Any positive real valued function g(X), where X is a configuration or set of points, such that g(AX)5Ag(X),
where A is any positive, real scalar value. In other words, multiplying every element in X by A multiplies g(X) by
A. There are a wide variety of measures of size, including lengths measured between landmarks, sums or differ-
ences of interlandmark distances, square roots of area, etc. The size measure used in geometric morphometrics is
centroid size. See also Centroid size (Chapters 3, 4).

Size-and-shape All the geometric information remaining in an object (such as a landmark configuration) after dif-
ferences in location and rotational effects are removed. See Procrustes SP, Form.

Space A set of objects (or measurements thereof) that satisfies some definition. For example, a space might be
defined as the set of all four-landmark configurations measured in two dimensions.

Statistic Any mathematical function based on an analysis of all measured individuals, e.g. the mean, standard
deviation, variance, maximum, minimum, and range. The true value of the statistic in the population is called the
parameter, which we are trying to estimate from our sample (Chapter 8).

Superimposition A method for matching two landmark configurations (or matrices) prior to further analysis,
sometimes also called a registration. A number of different optimality criteria may be used. See also Bookstein
coordinates, Procrustes superimposition (also Full Procrustes superimposition and Partial Procrustes superim-

position, RFTRA, Sliding baseline registration (Chapters 3, 4).

Strain See Principal strain.

Tangent space The linear vector space tangent to a curved space. In geometric morphometrics, the Euclidean
space tangent to Kendall’s shape space. In the tangent space, distances between shapes are linear functions, which
allows for analysis of shape variation by ordinary multivariate statistical methods. When the linear approximation
to the curved surface is accurate (when all shapes in a study are close to the point of tangency), distances in the
tangent space approximate distances in the curved space. The point of tangency between Kendall’s shape space
and the tangent space is the reference form. See also Kendall’s shape space, Reference form (Chapter 4).
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Target shape A shape being compared to the reference shape. See Reference.

Thin-plate spline An interpolation function used to predict the difference in shape between a reference and
another shape over all points on the form, not just at landmarks. This interpolation function minimizes the bend-
ing energy of the deformation, which is equivalent to modeling that deformation as smoothly as possible given
the observed landmarks (thus taking a parsimonious approach to interpolation). Thin-plate spline analysis pro-
duces scores for the non-uniform component of the deformation�scores for the uniform component are produced
by a different analysis (Chapter 5).

Transformation See Map.

Two-point shape coordinates See Bookstein coordinates.

Type I, Type II error Type I error is rejecting a true null hypothesis. Type II error is failing to reject a false null
hypothesis. Most approaches to statistics are careful to state and analyze Type I error, much less attention is paid
to Type II error, and it is typically harder to estimate the rate of Type II errors.

Type 1 landmark A landmark that can be defined in terms of local information, such as a landmark located at
the junction of three bones or two bones and a muscle (i.e. anatomical features that meet at a point). There is no
need to refer to any distant structures or maxima/minima of curvature. The typology of landmarks is based on
Bookstein, 1991. See also Type 2 and Type 3 landmarks (Chapter 2).

Type 2 landmark A landmark defined by a relatively local property, such as the maximum or minimum of curva-
ture of a small bulge or at the endpoint of a structure. These are considered less useful than Type 1 landmarks
because their evidence of homology is at least partly geometric rather than purely histological or osteological. See
also Type 1 and Type 3 landmarks (Chapter 2).

Type 3 landmark A landmark defined in terms of extremal points, such as the landmark on the rostrum furthest
away from the foramen magnum. Such landmarks are regarded as deficient because they have one less degree of
freedom than they have coordinates (the other degree of freedom is lost when specifying how to locate the land-
mark). Such landmarks can be used in geometric morphometric studies, but the loss of a degree of freedom must
be taken into account when conducting statistical tests. See also Type 1 and Type 2 landmarks (Chapter 2).

Unbalanced Design An experimental design in which the sample size within each combination of the factors is
not equal. This makes it difficult to partition the variance, and gives rise to a variety of different approaches to
calculating the sums of squares in a MANOVA or MANCOVA (Chapter 9).

Uniform components The components describing the uniform deformation. For two-dimensional configurations,
the uniform deformation is described by two components: compression/dilation and shear. The uniform defor-
mation is sometimes considered the zeroth partial warp (Chapter 5).

Uniform deformation A deformation that is purely uniform (or affine), or the purely uniform component of a
deformation. The uniform deformations include only the uniform transformations that alter shape (compression/
dilation and shear). They do not include transformations that do not alter shape (translation, scaling and rotation).
See also Uniform shape component (Chapter 5).

Uniform component scores Scores locating a specimen, relative to the reference, along the uniform components.
The summed squared scores on the uniform components and partial warps equal the Procrustes distance between
each specimen and the reference. Taken together, the uniform and non-uniform scores fully describe the shape
difference between the reference and that specimen (Chapter 5).

Variation, morphological variation A term used to refer to the general idea of variety, usually within a single
population in contrast to disparity which refers to variation among species. Variation is typically measured as the
sample variance:

S2 5

Pn
i51ðxi2xÞ2
ðn2 1Þ

that is, the mean of the summed squared deviations from the mean. See also Disparity (Chapter 10).

Vector A set of P coordinates that specify the location of a point in P dimensions.
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Vector space A set of vectors, together with rules for adding and multiplying them (thereby obtaining all permis-
sible linear combinations of them). Addition and scalar multiplication are required to meet eight rules:

1. X1Y5Y1X

2. X1 (Y1Z)5 (X1Y)1Z

3. A unique zero vector exists such that X1 05X, for all X

4. For each X there exists a unique vector 2X such that X1 (2X)5 0

5. 1X5X

6. (C1C2)X5C1(C2X)

7. C(X1Y)5CX1CY

8. (C11C2)X5C1X1C2X.

White Book Marcus, L.F., Corti, M., Loy, A. et al. (1996). Advances in Morphometrics. Plenum Press. See also Black

Book, Blue Book, Orange Book and Red Book.
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Landmark (Continued)
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model expression as distance matrices, 249�250
overview, 248�251
permutation types, 251

resampling statistics, 215�217
PGLS, see Phylogenetic generalized least squares
Phenotypic plasticity

fluctuating asymmetry comparison,
371�373, 372f

norms of reaction quantification, 355�360, 355f,
356f, 357f, 358f

visualization, 360
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Phylogenetic generalized least squares (PGLS),
183�185, 266�268

Phylogenetic independent contrasts (PIC),
266, 266f, 267�268, 268

PIC, see Phylogenetic independent contrasts
PLS, see Partial least squares
Positively allometric measurements, 308, 316f
Pre-shape space

fibers, 83�84, 83f, 84f, 85f
overview, 81�84
shape, 82�83

Principal components analysis (PCA)
algebraic description, 141�144
allometric coefficient computation, 306�308,

307t, 309t, 310t
between groups principal components analysis,

164�166, 165f, 166f
bitemark analysis, 177�180, 178f, 179f

180f, 182t
character finding, 407, 409�412, 410f

411f, 412f
components as eigenvectors of

variance�covariance matrix, 145�146
fluctuating asymmetry, 369�370
geometric description, 137�141, 138f, 139f

140f, 141f
interpretation, 146�150, 146f, 147f, 148t

149f, 150f
ontogenic trajectory and scaling contribution to

morphological variation, 327, 329, 330f, 331,
332f, 333f

overview, 135�150
partial least squares comparison, 175�176
PC1, 5, 137�139, 141, 143�144, 147�148,

196�197
PC2, 147�148, 196�197
PC3, 196�197

Procrustes analysis of variance, 367, 369t
Procrustes distance, 85f, 97f, 339t, 343f, 345t
Procrustes size preserving, 420�424, 426, 426t
Procrustes superimposition

overview, 62�65, 63f
three dimensions, 65

Pseudo F-test, 209
PW, see Partial warp

R
Random rate, canonical variates analysis, 162
Randomization, see Resampling statistics
Reduced model, 251
Reference configuration, 85�86, 99�100
Relative eigenalysis, fetal alcohol spectrum disorder

changes, 431�432

Resampling statistics
bootstrap, 212�215
jackknife, 217�218
Monte Carlo methods, 218�219
number of repetitions, 222�223
overview, 210�212
permutation tests, 215�217
regression models, 219�221
statistical power, 221�222

Resistant-fit superimposition (RFTRA)
Generalized Procrustes Analysis comparison, 69f
interpretation of graphical results, 69�73, 70f,

71f, 72f
overview, 67�73, 67f

RFTRA, see Resistant-fit superimposition
RMS scatter, see Root mean square scatter
Root mean square (RMS) scatter, 425�426, 427t
RV, see Escoufier’s coefficient

S
SA, see Singular axes
SBR, see Sliding baseline registration
Scapula

landmark
selection, 7f
superimposition, 125f
resistant-fit superimposition, 67f, 69f
semilandmark

sliding, 124f
superimposition, 66f

SEM, see Standard error of the mean
Semilandmark

bending energy for superposition, 123�126,
124f, 125f

landmark comparison, 23�27, 24f
overview, 9, 11f
pelvis sex estimation, 427�430, 428f
superimposition, 65�67, 66f

Sex estimation, see Forensics
Shape

definition, 11�13, 12f, 75�77, 76f
deformation visualization, see Thin-plate spline
matching, see Forensics
morphometric spaces

configuration matrix
overview, 78, 79f
position, 79�80, 80f

configuration space
overview, 78�79
size, 80�81, 81f
pre-shape space, see Pre-shape space
Procrustes superimposition

overview, 62�65, 63f
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three dimensions, 65
resistant-fit superimposition

Generalized Procrustes Analysis comparison, 69f
interpretation of graphical results, 69�73, 70f

71f, 72f
overview, 67�73, 67f

size information restoration
Bookstein shape coordinates in three dimensions,

60�61, 60f
overview, 59�61, 59f

size relationship, 5�6
sliding baseline registration, 72�73, 72f
statistics, 61�62
three-dimensional configurations, 90�91
triangle space example of theory, 91�97, 91f,
93f, 94f, 95f, 96f, 97f

Shape coordinates
operations, 51�59, 52f
triangle shape comparisons

baseline selection, 57�59, 58f
multiple triangles, 54�55, 55f
multiple triangles on each individual, 55�57, 56f
two triangles, 53�54, 53f

Shape space
angle of rotation minimizing distance between
two shapes, 89

Kendall’s shape space, 88�89, 88f, 97
overview, 85�89, 87f
tangent spaces

dimensions and degrees of freedom, 100�101
overview, 97�101, 98f
reference configuration selection, 101�102

Singular axes (SA), 170�173
Singular value decomposition (SVD), 170
Singular warp, see Singular axes
Size

definition, 13, 13f
shape coordinates and size information
restoration

Bookstein shape coordinates in three dimensions,
60�61, 60f

overview, 59�61, 59f
shape relationship, 5�6

Skull
allometric coefficient interpretation, 308�312,
311f, 311t

canalization, 362�363, 363f, 363t
fluctuating asymmetry, 367, 368f, 368t
landmark selection

cotton rat, 40�42, 40f
marmot, 42, 43f
mouse, 40�42

landmark switching, 8f

nearest neighbor analysis of shape variation,
269�270

ontogenic changes in rat development, 302f
superimposition of forms with axis of
symmetry, 72f

Sliding baseline registration (SBR), 72�73, 72f,
131�132

Software, geometric morphometrics, 19
SS, see Sum of squares
SSCP, see Sum of squares and cross products matrix
Standard deviation, 210�211
Standard error of the mean (SEM),

210�211
Statistical significance, 191
Sum of squares (SS)

error, 208, 226, 238
general linear model

multivariate sum of squares, 247�248
unbalanced designs

selection of type, 247
Type I, 244�245
Type II, 245�246
Type III, 246�247

Sum of squares and cross products matrix
(SSCP), 235

Sum of squares matrix, 234
SVD, see Singular value decomposition

T
Tangent spaces

dimensions and degrees of freedom, 100�101
overview, 97�101, 98f
reference configuration selection, 101�102

Target configuration, 85�86
Taxonomic discrimination

canonical variates analysis, 401, 402f, 403�404
overview, 399�400

Teeth, see Bitemark analysis
Thin-plate spline

bending energy for semilandmark
superposition, 123�126, 124f, 125f

partial warp
algebra, 116�119
definition, 113
intuitive examples, 113�116, 114f, 115f

physical metaphor
components of deformation

non-uniform components, 113
uniform components, 109�112, 110f, 111f

overview, 108�113
purposes, 103�106, 104f, 105f
shape change visualization, 121�123, 122f
shape modeling as deformation, 107�108
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Thin-plate spline (Continued)
three-dimensional deformation data analysis,

119�121
uniform component shear and compression/

dilation term calculation
derivations, 127�131
principles, 126�127
sliding baseline registration, 131�132

Transpositional allometry, 322�323
Type I error, 211

U
Uniform transformation, see Affine transformation
Univariate analysis of variance, see Analysis of variance
Unweighted pair-group method with arithmetic

means (UPGMA), 290�291
UPGMA, see Unweighted pair-group method with

arithmetic means

W
Wilks’ Lambda, 197�199
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